














CECT7802, and J. faecimaris DSM10004020), wherein genes were arranged as forward
puh LhaA bchMLHNF plus forward puf-bchZYXC-crtF. Type II arrangements were ob-
served for the other 10 strains, wherein arrangements followed the pattern of forward
puf-bchZYXC-crtF plus forward puh-LhaA-bchMLHNF (Fig. 4).

The arrangements of exPGCs of the PufC-containing group were of type II, which
exhibited the high conservation in the direction and order of all photosynthetic
genes on the exPGCs. In contrast, the exPGCs in the PufX-containing group exhib-
ited two different types of arrangements, with unique traits present in different
genera. For example, hemC and hemE genes encoding tetrapyrrole biosynthesis
proteins were present only in the exPGCs of Sulfitobacter. In addition, the genomic
region ranging from bchG to idd was located upstream of the puf operon in
Sulfitobacter, although it is typically downstream of the ppaA and ppsR regulator
genes within PGCs (20). Furthermore, the three exPGCs of the Jannaschia strains
lacked cytochrome c2 (cyc2) and diphosphate delta-isomerase (idi) genes. cyc2 is
involved in electron transfer, while idi is involved in isoprenoid biosynthesis. The
loss of these genes is not lethal for phototrophic bacteria (70, 71), but the genes are
nevertheless expected to be present in the PGCs of phototrophic bacteria within
the Roseobacter clade (33, 72, 73).

FIG 4 Photosynthetic gene cluster structures and arrangements for 13 exPGCs. ECR module positions (plasmid origin replication) within the exPGC are shown
in red and highlighted by stars. Arrows indicate the order of the conserved PGC genes as follows: type I, forward puh-LhaA-bchMLHNF plus forward
puf-bchZYXC-crtF; type II, forward puf-bchZYXC-crtF plus forward puh-LhaA-bchMLHNF. The classifications of type PufX and type PufC groups are based on their
different puf operon compositions, corresponding to pufXMLABQ and pufCMLABQ.

Liu et al.

September/October 2019 Volume 4 Issue 5 e00358-19 msystems.asm.org 8

 on S
eptem

ber 20, 2019 by guest
http://m

system
s.asm

.org/
D

ow
nloaded from

 



Evidence of ECR-mediated PGC transfer within the Roseobacter clade. Recent
studies have suggested that ECRs could be vehicles for HGT of PGCs (31, 33), albeit with
limited evidence. The idea of transfer of PGCs by ECRs was supported in our analyses
by the coexistence of two different types of puf operon structures (PufC and PufX types)
in different strains of two genera, Tateyamaria and Jannaschia. In particular, these two
types of puf operons were located on cPGCs and exPGCs, respectively. The Global
Ocean Sampling expedition metageomes were the first to reveal that pufC could be
replaced by pufX in AAPB and that pufC and pufX were present in different AAPB
phylogroups (5, 74). Thus, phylogenetic divergence of the two types of puf operons in
strains from the same genus suggested that one or both of them were introduced by
other phototrophic phylogroups. Moreover, phylogenetic congruence between whole
PGCs and conserved photosynthetic operons within the PGC (i.e., bchFNBHLM-IhaA-
puhABC and pufMLABQ-bchZYXC-crtF) indicate that PGCs act as entire functional units
rather than being subject to partial transfer between strains (Fig. S3); this is consistent
with a previous study (33). ECRs are mobile genetic elements; thus, PGCs carried by
ECRs are more likely to be horizontally transferred.

The potential for transfer of PGC-containing ECRs. As described above, the 13
PGC-containing ECRs were divided into two types based on their sizes and functions.
Small PGC-containing ECRs within Oceanicola sp. HL-35, Shimia sp. wx04, and J.
pohangensis DSM19073 carried more than 80% of the genes coding for PGCs. These
ECRs are usually present as plasmids and are likely to play an important role in the
transfer of phototrophic capacities among species. This is especially probable because
the transfer of small plasmids achieves higher efficiencies and the three streamlined
PGC-containing ECRs still appear to confer the capability of chlorophototrophy (75, 76).
The acquisition of streamlined PGC-containing ECRs might enable strains to obtain new
lifestyles at low costs, thereby providing advantages under certain environmental
conditions (34). The other large PGC-containing ECRs also encoded proteins with
various nonphotosynthetic functions. Moreover, a sox gene cluster (soxRSVYAZBCD),
usually located on the bacterial chromosome, was observed on the PGC-containing
chromid-like elements of N. ignava DSM1630, suggesting that the sox gene cluster
might be also transferred by the ECR. Most of these large ECRs were classified as
chromid-like ECRs. Consequently, these PGC-containing ECRs might preferentially be
maintained in bacterial hosts rather than be transferred among hosts. Notably, PGCs
carried by both plasmid-like and chromid-like ECRs have been suggested to be genomi-
cally stable because most exPGCs have been inserted by their corresponding ECR
replication modules (31).

Comparison of the GC contents of the bacterial genomes, exPGCs, and PGC-
containing ECRs did not reveal significant differences for any of the 13 Roseobacter
clade strains (Fig. S4). Thus, the transfer of these PGC-containing ECRs into bacteria
likely occurred during very distant evolutionary events or, otherwise, only between
closely related species (77).

A scenario to explain the evolution of AAPB exPGCs in the Roseobacter clade.
A previous scenario was suggested to explain the evolution of exPGCs in Roseobacter
clade organisms, wherein a chromosomal PGC superoperon was transferred into an
ECR, followed by integration of replication origin genes into the ECR (31, 34). Our
analyses validate this explanation, and we further present a more detailed scenario
(Fig. 5) to explain the transfer of PGCs within the Roseobacter clade after analyzing
genomic and evolutionary characteristics of 13 exPGCs in this group (31). In this revised
scenario, PGCs were first initially translocated from chromosomes to ECRs, as repre-
sented by the superoperon structure of exPGCs from J. faecimaris DSM1004020, J.
pohangensis DSM19073, and J. donghaensis CECT 7802. Three subsequent transfer
possibilities are present for exPGCs: (i) exPGCs reintegrated into chromosomes and
became cPGCs, as observed for most phototrophic Roseobacter clade strains; (ii) PGC-
containing ECRs were lost from strains, such that the bacteria became heterotrophs; or
(iii) exPGCs carried by ECRs were subjected to further recombination and became stable
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within ECRs. A remarkable characteristic of the majority of exPGCs is the insertion of an
ECR replication module within the PGC as a result of a series of recombination events.
Such an event could have helped ensure the stability of exPGCs (31).

The patchy distribution of AAPB within the Roseobacter clade has been explained
by two evolutionary models that invoke either loss or gain of PGCs (11–13). Given
that ECRs have played a critical role in the loss or gain of PGCs during the
evolutionary history of photosynthesis, the patchy distribution of AAPB within the
Roseobacter clade can be plausibly explained by ECR-mediated mechanisms. To
date, exPGCs have accounted for �20% of all PGCs in the currently available
genomes of Roseobacter clade strains (Table S3), highlighting their prevalence in
these organisms. It is likely that additional exPGCs carried by other strains will be
identified with further generation of new bacterial genome sequences. Moreover,
we suggest that the gain and loss of PGCs, as mediated by chromosomes and
especially ECRs, resulted in the patchy distribution of AAPB within the Roseobacter
clade.

In the present study, the genomic characteristics and evolution of 13 PGCs carried
by ECRs were analyzed. The coexistence of two types of puf operon structures within
strains of the same genera provided clear evidence of the horizontal transfer of PGCs
mediated by ECR. Analysis of PGC-containing plasmid-like and chromid-like ECRs
indicated that exPGCs could stably exist in bacteria after transfer, highlighting the
importance of phototrophic metabolism carried by ECRs for some bacteria. Further-
more, these analyses indicated that the process of gain or loss of PGCs, as mediated by
ECRs, contributes to the patchy distribution of phototrophic capacities within the
Roseobacter clade.

MATERIALS AND METHODS
Strain isolation. Tateyamaria sp. syn59 and Shimia sp. wx04 were isolated from the South China Sea

in April 2016 using oligotrophic medium F/2 plates (78), followed by transfer onto rich organic liquid
medium (Marine Broth 2216; Difco, USA) for further isolation and cultivation. All cultures were incubated
at 28°C with shaking at 200 rpm in the dark. Genomic DNA from the two strains was extracted using a
TaKaRa MiniBEST universal genomic DNA extraction kit (Japan).

Genome sequencing, assembly, and annotation. The genomes of Tateyamaria sp. syn59 and
Shimia sp. wx04 were sequenced on an Illumina MiSeq platform (Illumina, USA). Specifically, 2 � 250-bp
paired-end read sequencing was conducted, followed by read assembly using the Velvet program
(version 2.8) (79). Prediction and annotation of open reading frames (ORFs) were conducted using a
Rapid Annotation using Subsystems Technology (RAST) platform. Further, annotations of plasmids and
exPGCs were validated by BLASTP searches against the National Center for Biotechnology Information
(NCBI) nonredundant (nr) protein database (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The whole-genome
sequences of Tateyamaria sp. syn59 and Shimia sp. wx04 are available under GenBank accession numbers
VCBA00000000.1 (https://www.ncbi.nlm.nih.gov/nuccore/VCDK00000000) and VCDK00000000.1 (https://
www.ncbi.nlm.nih.gov/nuccore/VCBA00000000), respectively.

Retrieval of AAPB genomes from GenBank. Genome sequence data for the other eleven Roseo-
bacter clade strains were obtained from NCBI, including data for Tateyamaria omphalii DOK1-4

FIG 5 Scenarios to explain the transfer and evolution of exPGCs within Roseobacter clade species. PGCs are indicated in green, and
PGC-containing ECR origins of replication are indicated in red. Photosynthetic bacteria are indicated in light red, while non-photosynthetic
bacteria are indicated in light gray. C, chromosome; E, PGC-containing ECR.
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(CP019312.1); Tateyamaria sp. ANG-S1 (JWLL00000000.1); Roseobacter litoralis Och 149 (CP002623.1);
Oceanicola sp. HL-35 (JAFT00000000.1); Nereida ignava DSM 16309 (CVPC00000000.1); Sulfitobacter
noctilucicola KCTC 32123 (JASD00000000.1); Sulfitobacter guttiformis KCTC 32187 (JASG00000000.1);
Sulfitobacter sp. AM1-D1 (CP018076.1); Jannaschia donghaensis CECT 7802 (NZ_CXSU00000000.1); Jann-
aschia faecimaris DSM 10004020 (FNPX00000000.1); and Jannaschia pohangensis DSM 19073
(FORA00000000.1).

Phylogenetic analysis. Complete 16S rRNA gene sequences were extracted from the whole-genome
assemblies (WGA) using the Cluster program (80). To construct a phylogeny for the PGCs, the amino acid
sequences of 29 conserved photosynthetic genes within PGCs (bchI, bchD, bchO, tspO, crtC, crtD, crtF,
bchC, bchX, bchY, bchZ, pufL, pufM, bchP, puCC, bchG, ppsR, bchF, bchN, bchB, bchH, bchL, bchM, IhaA,
puhA, puhB, puhC, ascF, and puhE) (see Table S4 in the supplemental material) were retrieved from the
query genomes and then individually aligned using ClustalW, as implemented in the BioEdit program
(81). Phylogenetic analyses were conducted using RAxML 8.02 (82) and maximum likelihood (ML)
methods. The robustness of the tree topologies was evaluated using bootstrap analysis with 100
replicates. Final trees were then visualized using the Interactive Tree of Life viewer and MEGA version 7.0
(83, 84).

Data availability. All data used in this study are publicly available in GenBank. Accession numbers
can be found in Table S1 and Table S3.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/
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