








the characteristics of the individual itself rather than the treatment. (The relatively lower
accuracy of ApoE�/�-based metabolomics RF model can be attributed to fewer sam-
ples compared to the Ldlr�/� model [Fig. S1].)

Longitudinal dynamics of IHH-associated changes in the gut ecosystem. Next,
we used these longitudinal data sets to learn how the duration of IHH exposure impacts
the gut microbiome and metabolome over time and if this is consistent across the
mouse models. The goal was to compare the dynamics of changes in the gut ecosystem
with chronic IHH exposure in the ApoE�/� and Ldlr�/� mice. We tested this by
assessing the capability of the RF classifier to distinguish IHH samples from the control
at each time point. In ApoE�/� mice, the classification AUC using gut microbiome data
is high (constantly 1) at each time point starting at 11 weeks of age. The microbiome
in Ldlr�/� mice, however, appears more predictive only at later time points, with its
classification AUC improving from 0.71 at week 11 to more than 0.99 beyond week 14.
We also observed a similar lag in gut metabolome changes in Ldlr�/� compared to

FIG 2 Receiver operating characteristic (ROC) curves evaluating ability to predict exposure to IHH using the random forest model. Green curves
represent classification accuracy within each mouse model. Purple ROC curves correspond to a model trained using gut microbiome (a) and
metabolome (b) data from the ApoE�/� mouse model to predict IHH exposure in Ldlr�/� mice. Red curves show the same for microbiome (c) and
metabolome (d) data from Ldlr�/� mice tested on ApoE�/� mice. IHH, intermittent hypoxia and hypercapnia.
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ApoE�/� animals (see Table S2 in the supplemental material). Importantly, this is
concordant with our previous finding that the atherosclerotic lesions evolved slowly
and mildly in Ldlr�/� mice compared to ApoE�/� mice (4). Therefore, observing this
trend in both omics layers provides supporting evidence that the atherosclerosis
phenotype in these animals is linked to perturbations in their gut ecosystem. Moreover,
the gut microbiome and metabolome changes occur quickly after IHH exposure, before
atherosclerotic lesions were observed, which was reported to be 4 weeks for ApoE�/�

mice and 6 weeks for Ldlr�/� mice post-IHH exposure (4).
Reproducible biomarkers of IHH exposure. The subsequent goal of this analysis

was to narrow the list of fecal biomarkers that are reproducibly predictive of IHH
exposure, thereby guiding future mechanistic and clinical studies. The RF classifiers
used to distinguish the IHH-exposed and control animals described above provided us
with a ranked list of bacterial and chemical features important for prediction (see the
classifier trained on ApoE�/� microbiome and metabolome data in Table S3 and the
classifier trained on Ldlr�/� data in Table S4 in the supplemental material). We
examined the features that were top-ranked predictors in both Ldlr- and ApoE-based
classifiers. To investigate if there were some key biomarkers that could single-handedly
distinguish IHH from control, we used the abundance of each of these features
individually to plot ROC curves and compute AUCs. Indeed, some of these microbial
(Fig. 3a) and chemical (Fig. 3d) features could alone detect IHH exposure within each
mouse model highly accurately (AUC � 0.75; see Tables S5 and S6 in the supplemental
material for the AUC values per model per microbial and chemical feature, respectively).
We then used our longitudinal data to compare trends of these predictive features in
IHH-exposed and control groups in both animal models. Fig. 3b, c, e, and f show
abundance trends in top consistently altered features (additional trends provided in
Fig. S3 and S4 in the supplemental material). The goal was to investigate if these
microbial and chemical species changed in the same direction on IHH exposure in both
ApoE�/� and Ldlr�/� mice or had idiosyncratic responses to exposure based on the
genetic background of the host. The consistent predictors included bacterial strains
from the families Mogibacteriaceae and Clostridiaceae, fatty acids identified as vaccenic
acid and hexadecenoic acid (level 2 identification [25]), and bile acids, including
taurocholic acid, taurodeoxycholic acid, and muricholic acid (level 1 identification).
These microbes and metabolites highlight key IHH-related changes in the gut microen-
vironment that could guide subsequent reconstitution experiments in germfree mice to
establish causality.

DISCUSSION

We examined the reproducibility of IHH-associated alterations in the gut micro-
biome and metabolome of Ldlr�/� and ApoE�/� mouse models, crucial for under-
standing links between OSA and associated cardiovascular pathologies. As both APOE
and LDLR are important in clearing cholesterol and triglyceride-rich particles from the
blood, both models show elevated plasma cholesterol levels. However, they develop
atherosclerotic plaques to different extents under high-fat dietary conditions (26–28).
Concordant with these phenotypic differences, we highlight throughout that the gut
ecosystems of the two models are also intrinsically distinct. As technical variables such
as origin of animals, housing conditions, experimental batches, and data acquisition
protocols are important considerations for meta-analyses such as ours (29, 30), we
ensured that all animals were handled in the same facility and data were acquired using
identical protocols to minimize confounding effects. It is worth noting that instead of
cohousing, we use separate cages for IHH-exposed and control animals (2 or 3 cages
per treatment group) throughout, as previous work has shown that coprophagy during
cohousing could rescue microbial and metabolic perturbations in the gut (31), which
were of interest here. Furthermore, we used supervised machine learning to identify
features specifically associated with IHH exposure in both animal models reproducibly.

To our knowledge, the impact of IHH on the gut ecosystem in the context of
atherosclerosis has not been investigated before, making our work exploratory in
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nature. Intermittent hypoxia alone (without hypercapnia or HFD) has been reported to
significantly alter the microbiome in wild-type mice (32) and guinea pigs (33), which
lends support to our findings with IHH exposure. Another study modeled human OSA
and its cardiovascular consequences in HFD-fed rats by inflating a tracheal balloon
during the sleep cycle (34). The authors concluded that HFD and OSA synergistically
caused hypertension and gut dysbiosis in these rats. Moreover, intermittent hypoxia
with hypobaric stress (35) and chronic hypoxia (36) were also reported to alter the fecal
microbiota in rats. In the latter study, chronic hypoxia-induced gut dysbiosis was
implicated in premature senescence of bone marrow mesenchymal stem cells (BMSCs),
and BMSCs were restored by intragastric supplementation of Lactobacillus. Interest-
ingly, bone marrow function was also altered due to HFD-induced changes in the gut
microbiota in mice (37). Further investigations would be needed to test if related
mechanisms are at play in the obstructive sleep apnea mouse models discussed here
(HFD and IHH exposure) as well.

In this work, we report consistent IHH-associated changes that include unclassified
strains belonging to the families Ruminococcaceae, Mogibacteriaceae, Lachnospiraceae,
and Clostridiaceae (Fig. 3; Fig. S4). These taxonomic groups have been associated with

FIG 3 Individual microbes and metabolites that distinguish IHH from the control group in both ApoE�/� and Ldlr�/� mice. (a) ROC curves using each microbe’s
abundance. Each curve represents the sensitivity and specificity as a function of the abundance of a single microbe to distinguish IHH and control groups. The
curves for microbes enriched in IHH are above the diagonal line, while those for microbes depleted in IHH are below the diagonal line. Two predictive microbial
features that are consistently altered in ApoE�/� and Ldlr�/� animals in both mouse models are highlighted by color. (b and c) The abundance trends of these
two microbes in each mouse model along time. (d, e, and f) Similar plots for the metabolome data set highlighting two consistently altered features. The
features were identified as vaccenic acid (m/z, 283.2629498309951; RT, 5.430859365079369) and hexadecenoic acid (m/z, 255.2317783582418; RT,
5.1814566985645945) based on MS/MS fragmentation. ROC, receiver operating characteristic; IHH, intermittent hypoxia and hypercapnia; RT, retention time.
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cardiovascular, metabolic, and inflammatory conditions (38–40), which indicates shared
mechanistic pathways in OSA-associated cardiovascular conditions. Furthermore, our
work is the first to profile OSA-associated changes in the gut metabolome at this scale.
We observed reproducible perturbations in clinically relevant biomolecules in both
ApoE�/� and Ldlr�/� mice. For example, vaccenic acid, a trans-fatty acid that has been
reported to lower low-density lipoprotein (LDL) cholesterol and triglyceride levels in
rats (41), was found to decrease under IHH exposure in both models. Similarly, bile acid
molecules such as muricholic acid and taurocholic acid were more abundant in
IHH-exposed versus control animals. Bile acids are crucial not only for facilitating
transport of dietary fats and cholesterol in the host but also for regulating host energy
expenditure, glucose homeostasis, and anti-inflammatory immune responses (42–46).
Many metabolic and cardiovascular conditions (47) have been associated with aberrant
bile acid profiles, suggesting that prolonged perturbations in these key molecules
could contribute to downstream adverse cardiovascular consequences of OSA as well.
It is noteworthy that we also identified microbes and metabolites that were highly
predictive within both ApoE�/� and Ldlr�/� mice but altered in opposite directions in
the two animals on IHH exposure (Fig. S3 and S4). Whether these opposite trends are
due to a differential impact of HFD or IHH exposure on the two genotypes requires
further investigation. This, together with the high cross-genotype prediction accuracy
using all features (Fig. 2), suggests that although the microbiome and metabolome
changes induced by IHH are largely consistent across mouse models, there do exist
some animal model-specific changes as well. Hence, multi-animal model studies such
as this are highly advantageous in precisely identifying biomarkers robustly associated
with an intervention of interest.

In summary, our work provides reproducible candidate biomarkers of IHH exposure
in animal models (and potentially OSA in humans) that will be most applicable to
designing diagnostic and treatment modalities. Furthermore, we outline a general
pipeline to select for biomarkers and therapeutic targets that is applicable to other
intervention studies as well. We have made these information-rich data sets publicly
available to promote collaborative progress in this area of research.

MATERIALS AND METHODS
Animals. Atherosclerosis-prone 10-week-old male Ldlr�/� (n � 16) and ApoE�/� (n � 24) mice on a

C57BL/6J background (stock no. 002207 and 002052, respectively; The Jackson Laboratory, Bar Harbor,
ME) were used in this study (26, 27). Ldlr and ApoE deficiencies were confirmed by PCR according to the
vendor’s instructions. Animals were either exposed to intermittent hypoxia and hypercapnia (n � 8 and
n � 12 for Ldlr�/� and ApoE�/� animals, respectively) or air (control group) and fed with high-fat diet.
All animal protocols were approved by the Animal Care Committee of the University of California—San
Diego and followed the Guide for the Care and Use of Laboratory Animals (48) of the National Institutes
of Health.

High-fat diet treatment. Mice were fed with regular chow consisting of 0.01% cholesterol and 4.4%
fat (TD.8604; Envigo-Teklad, Madison, WI) until initiation of dietary and IHH treatments. Starting at
10 weeks of age, male mice were provided with a high-fat diet (HFD) containing 1.25% cholesterol and
21% milk fat (4.5 kcal/g [TD.96121; Envigo-Teklad, Madison, WI]) while being exposed to either IHH or
room air. Body weight of each mouse was measured twice a week. Food intake of animals in each cage
was recorded twice a week.

Intermittent hypoxia and hypercapnia exposure. Intermittent hypoxia and hypercapnia (IHH) was
maintained in a computer-controlled atmosphere chamber system (OxyCycler; Reming Bioinstruments,
Redfield, NY) as previously described (4). IHH exposure was introduced to the mice in short periods
(�4 min) of synchronized reduction of O2 (from 21% to 8%) and increase of CO2 (from �0.5% to 8%)
separated by alternating periods (�4 min) of normoxia ([O2] � 21%) and normocapnia ([CO2] � �0.5%)
with 1- to 2-min ramp intervals for 10 h per day during the light cycle. This treatment protocol mimics
the severe clinical condition observed in obstructive sleep apnea patients. Mice on the same HFD but in
room air were used as controls. Fecal samples were collected at baseline and twice each week for 6 weeks
(Ldlr�/�) or 10 weeks (ApoE�/�).

16S rRNA sequence processing. We performed 16S sequencing on fecal samples from Ldlr�/� and
ApoE�/� mice for all time points. DNA extraction and 16S rRNA amplicon sequencing were done using
Earth Microbiome Project (EMP) standard protocols (http://www.earthmicrobiome.org/protocols-and
-standards/16s) (49). In brief, DNA was extracted using the Mo Bio PowerSoil DNA extraction kit (Carlsbad,
CA). Amplicon PCR was performed on the V4 region of the 16S rRNA gene (Platinum Hot Start PCR 2�
master mix; Invitrogen RED 13000014) using the primer pair 515f to 806r with Golay error-correcting
barcodes on the reverse primer. Amplicons were barcoded and pooled in equal concentrations for
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sequencing. The amplicon pool was purified with the Mo Bio UltraClean PCR cleanup kit and sequenced
on the Illumina HiSeq 2500 sequencing platform. Sequence data were demultiplexed and minimally
quality filtered using the QIIME 1.9.1 script split_libraries_fastq.py, with a Phred quality threshold of 3 and
default parameters to generate per-study FASTA sequence files.

The raw sequence data were processed using the Deblur workflow (23) with default parameters in
Qiita (50). This generated a sub-operational taxonomic unit (sOTU) abundance per sample (BIOM format)
(51). Taxonomies for sOTUs were assigned using the sklearn-based taxonomy classifier trained on the
Greengenes 13_8 99% OTUs (feature classifier plug-in) in QIIME 2 (52). The sOTU table was rarefied to a
depth of 2,000 sequences/sample to control for sequencing effort (53). A phylogeny was inferred using
SATé-enabled phylogenetic placement (54), which was used to insert 16S Deblur sOTUs into Greengenes
13_8 at a 99% phylogeny.

LC-MS/MS data processing. We acquired LC-MS/MS data on fecal samples from Ldlr�/� (for 10
through 16 weeks of age) and ApoE�/� (at ages 10, 12, 14.5, 17, and 19.5 weeks) mice using identical
protocols. Details of data acquisition parameters are specified in reference 2. Briefly, fecal pellets (30
to 50 mg approximately) were extracted in 500 �l of 50:50 methanol-H2O solvent, followed by
centrifugation to separate insoluble material. The extracts were dried completely by centrifugal
evaporation (CentriVap centrifugal vacuum concentrator; Labconco, Kansas City, MO) and resus-
pended in 150 �l of methanol-H2O (1:1 vol/vol). After resuspension, the samples were analyzed on
a Vanquish ultraperformance liquid chromatography (UPLC) system coupled to a Q Exactive orbital
ion trap (Thermo Fisher Scientific, Bremen, Germany). A C18 core shell column (Kinetex column, 50
by 2 mm, 1.7-�m particle size, 100-Å pore size; Phenomenex, Torrance, CA) with a flow rate of
0.5 ml/min (solvent A, H2O– 0.1% formic acid [FA]; solvent B, acetonitrile– 0.1% FA) was used for
chromatographic separation (2).

The raw data sets were converted to m/z extensible markup language (mzXML) in centroid mode
using MSConvert (part of ProteoWizard) (55, 56). All mzXML files were cropped with an m/z range of
75.00 to 1,000.00 Da. Feature extraction was performed in MZmine2 (http://mzmine.sourceforge.net/)
(57) with a signal intensity threshold of 2.0e5 and minimum peak width of 0.3 s. The maximum allowed
mass and retention time tolerances were 10 ppm and 10 s, respectively. A local minimum search
algorithm with a minimum relative peak height of 1% was used for chromatographic deconvolution; the
maximum peak width was set to 1 min. The detected peaks were aligned across all samples using the
above-mentioned retention time and mass tolerances, producing the final feature table used in these
analyses. (See the MZmine2 batch processing file available at https://github.com/knightlab-analyses/
crossmodel_prediction/blob/master/data/metabolome/fileS7.mzmine2_batch.xml.)

We performed molecular networking (58, 59) in GNPS (https://gnps.ucsd.edu/) to putatively identify
molecular features using MS/MS-based spectral library matches. The parameters used for molecular
networking in this study are available at the University of California—San Diego GNPS site (https://gnps
.ucsd.edu/ProteoSAFe/status.jsp?task�3dbc660b9bdd4f699d31750d99b25463). Additionally, we pur-
chased analytical standards for bile acids of interest (based on previous work [2, 59]: �/�-muricholic
acid, chenodeoxycholic acid, cholic acid, lithocholic acid, deoxycholic acid, and taurodeoxycholic
acid) from Cayman Chemical (Ann Arbor, MI). We analyzed them using the same LC-MS/MS method
described above to compare and verify the exact masses, fragmentation patterns, and retention times
to ensure level 1 annotations (https://github.com/knightlab-analyses/haddad_osa/blob/master/data/
standard_identified_all.txt), as defined by the 2007 metabolomics standards initiative (25).

Sharedness of microbial and metabolomic features across animal models. We calculated the
sharedness of microbial features as follows. To quality control the 16S sequences obtained per animal
model, we retained only reads that were prevalent within each model, i.e., above a sum relative
abundance threshold of 10E�06 and present in at least 1% of the samples, thus avoiding sequencing
noise. The numbers of such reads in Ldlr�/� and ApoE�/� animals were 635 and 582, respectively. Out
of these, 248 sequences were shared between the two models. Therefore, the percentage of microbiome
features shared between the animal models was 39% of unique microbial features found in the Ldlr�/�

model (and 42% of those in the ApoE�/� model).
For metabolomic data, we quality controlled the chemical features by retaining those above a sum

relative abundance threshold of 10E�01 and present in at least 10% of all samples for each animal model
individually. There were 267 and 374 such features in Ldlr�/� and ApoE�/� animals, respectively. Out of
these, 137 metabolites were shared between the two models. Thus, the percentages shared between the
animal knockout models were 51% of total features in the Ldlr�/� model and 36% of those in the
ApoE�/� model.

Effect size analyses. Effect sizes were calculated over the individual genotype, mice, cage number,
age, and exposure type. For each of these covariates, we applied the mixed directional false-discovery
rate (mdFDR) (60) methodology to test for the significance of each pairwise comparison among the
groups. For each significant pairwise comparison via PERMANOVA (24), we computed the effect size
using Cohen’s d (61) or the absolute difference between the mean of each group divided by the pooled
standard deviation. As diversity estimators, we used unweighted UniFrac and Bray-Curtis distances
matrices for the 16S rRNA sequencing and LC-MS/MS, respectively.

For the microbiome data layer (Table S1), when taking both genotypes together, we see that the first
three largest effect sizes are mouse number, age, and cage number, followed by genotype and exposure
type. It is noteworthy that the maximum difference (effect size) on the first three covariates are related
to genotype differences. For example, the maximum difference in mouse number is between two mice
(mouse no. 105 [ApoE�/�] versus 32 [Ldlr�/�] [Fig. S1]) that belong to two different genotypes and
exposure types. To untangle the effect of genotype, we stratified our data set by genotypes and
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calculated effect sizes of each of the covariates within each model. The effects of covariates are ranked
differently within each model, hinting toward underlying differences in the characteristics of the
microbial community. Nevertheless, the effect of exposure is ranked comparably across models. Similarly,
we calculate effect sizes of the above-mentioned covariates for the metabolome data layer (Table S2).
When taking both genotypes together, consistent with the microbiome results, mouse number, age, and
cage number have the largest effect sizes, and the groups with the maximum effects belong to different
genotypes (e.g., mouse no. 114 [ApoE�/�] versus 17 [Ldlr�/�]). We then stratified the data by genotype
and observed that different covariates had distinct effects within each genotype. Interestingly, our
analysis shows that unlike in Ldlr�/� mice, individual variability was not significant in ApoE�/� mice. It
is important to note that given our study design, we are reporting the effect sizes of each variable
individually without correcting for other covariates. For example, it is not possible to partial out the effect
of the cage from the effect IHH exposure as we needed to house IHH-exposed and control animals
separately throughout the experiments (Fig. S1). Another study design will be needed to accurately
report the independent effect size of each variable.

Supervised classification. The random forest (RF) classifier was trained and evaluated with cross-
validation for each mouse model, using microbial or chemical features as predictors. During cross-
validation, all the samples from the same mouse appeared only in either training or validation data
but not both to avoid overoptimistic cross-validation accuracy scores as a result of the classifier
learning idiosyncrasies of the individual itself rather than the treatment. The classifiers trained for
each mouse model were then applied on the samples of the other mouse model for cross-genotype
prediction. For the longitudinal prediction, we trained and evaluated an RF classifier on the samples
collected at each time point for AUC computation. To assess the capability of individual 16S
sequences and metabolites to separate IHH-exposed from control animals, we used the abundance
of each feature as the score to plot the ROC curve and compute the AUC and highlighted the
features that can single-handedly distinguish IHH on ROC plots. These analyses were done using the
scikit-learn Python package.

Data availability. The data generated in this study are available publicly in the GNPS/MassIVE
repository under the following accession numbers: for metabolomics data, MSV000081482 (Ldlr knock-
out animal) at ftp://massive.ucsd.edu/MSV000081482, MSV000082813 (ApoE knockout animal) at ftp://
massive.ucsd.edu/MSV000082813, and MSV000081853 (commercial standards) at ftp://massive.ucsd.edu/
MSV000081853, and for microbiome data, ERP106495 (Ldlr knockout animals; EBI database) and
ERP110592 (ApoE knockout animals). Data analysis has been documented in Jupyter notebooks available
on GitHub (https://github.com/knightlab-analyses/crossmodel_prediction).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00058-19.
FIG S1, TIF file, 1.2 MB.
FIG S2, TIF file, 0.6 MB.
FIG S3, DOCX file, 1 MB.
FIG S4, DOCX file, 1.5 MB.
TABLE S1, DOCX file, 0.1 MB.
TABLE S2, DOCX file, 0.1 MB.
TABLE S3, XLS file, 0.2 MB.
TABLE S4, XLS file, 0.2 MB.
TABLE S5, XLS file, 0.7 MB.
TABLE S6, XLS file, 0.1 MB.

ACKNOWLEDGMENTS
We thank Lingjing Jiang for very helpful suggestions and discussions regarding

statistical analyses.
We acknowledge NIH grants GMS10RR029121 and 5P41GM103484-07 for the shared

instrumentation and computational infrastructure that enabled this work.
The authors declare no competing financial interests.

REFERENCES
1. McNicholas WT, Bonsigore MR, Management Committee of EU COST

ACTION B26. 2007. Sleep apnoea as an independent risk factor for
cardiovascular disease: current evidence, basic mechanisms and re-
search priorities. Eur Respir J 29:156 –178. https://doi.org/10.1183/
09031936.00027406.

2. Tripathi A, Melnik AV, Xue J, Poulsen O, Meehan MJ, Humphrey G, Jiang
L, Ackermann G, McDonald D, Zhou D, Knight R, Dorrestein PC, Haddad
GG. 2018. Intermittent hypoxia and hypercapnia, a hallmark of obstruc-

tive sleep apnea, alters the gut microbiome and metabolome. mSystems
3:e00020-18. https://doi.org/10.1128/mSystems.00020-18.

3. Douglas RM, Bowden K, Pattison J, Peterson AB, Juliano J, Dalton ND, Gu
Y, Alvarez E, Imamura T, Peterson KL, Witztum JL, Haddad GG, Li AC.
2013. Intermittent hypoxia and hypercapnia induce pulmonary artery
atherosclerosis and ventricular dysfunction in low density lipoprotein
receptor deficient mice. J Appl Physiol 115:1694 –1704. https://doi.org/
10.1152/japplphysiol.00442.2013.

Tripathi et al.

March/April 2019 Volume 4 Issue 2 e00058-19 msystems.asm.org 10

 on O
ctober 25, 2020 by guest

http://m
system

s.asm
.org/

D
ow

nloaded from
 

ftp://massive.ucsd.edu/MSV000081482
ftp://massive.ucsd.edu/MSV000082813
ftp://massive.ucsd.edu/MSV000082813
ftp://massive.ucsd.edu/MSV000081853
ftp://massive.ucsd.edu/MSV000081853
https://www.ncbi.nlm.nih.gov/sra/ERP106495
https://www.ncbi.nlm.nih.gov/sra/ERP110592
https://github.com/knightlab-analyses/crossmodel_prediction
https://doi.org/10.1128/mSystems.00058-19
https://doi.org/10.1128/mSystems.00058-19
https://doi.org/10.1183/09031936.00027406
https://doi.org/10.1183/09031936.00027406
https://doi.org/10.1128/mSystems.00020-18
https://doi.org/10.1152/japplphysiol.00442.2013
https://doi.org/10.1152/japplphysiol.00442.2013
https://msystems.asm.org
http://msystems.asm.org/


4. Xue J, Zhou D, Poulsen O, Imamura T, Hsiao Y-H, Smith TH, Malhotra A,
Dorrestein P, Knight R, Haddad GG. 2017. Intermittent hypoxia and
hypercapnia accelerate atherosclerosis, partially via trimethylamine-
oxide. Am J Respir Cell Mol Biol 57:581–588. https://doi.org/10.1165/
rcmb.2017-0086OC.

5. Lui MM-S, Sau-Man M. 2012. OSA and atherosclerosis. J Thorac Dis
4:164 –172. https://doi.org/10.3978/j.issn.2072-1439.2012.01.06.

6. Franklin CL, Ericsson AC. 2017. Microbiota and reproducibility of rodent
models. Lab Anim (NY) 46:114 –122. https://doi.org/10.1038/laban.1222.

7. Poussin C, Sierro N, Boué S, Battey J, Scotti E, Belcastro V, Peitsch MC,
Ivanov NV, Hoeng J. 2018. Interrogating the microbiome: experimental
and computational considerations in support of study reproducibility.
Drug Discov Today 23:1644 –1657. https://doi.org/10.1016/j.drudis.2018
.06.005.

8. Goodrich JK, Di Rienzi SC, Poole AC, Koren O, Walters WA, Caporaso JG,
Knight R, Ley RE. 2014. Conducting a microbiome study. Cell 158:
250 –262. https://doi.org/10.1016/j.cell.2014.06.037.

9. Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J,
Gonzalez A, Kosciolek T, McCall L-I, McDonald D, Melnik AV, Morton JT,
Navas J, Quinn RA, Sanders JG, Swafford AD, Thompson LR, Tripathi A,
Xu ZZ, Zaneveld JR, Zhu Q, Caporaso JG, Dorrestein PC. 2018. Best
practices for analysing microbiomes. Nat Rev Microbiol 16:410 – 422.
https://doi.org/10.1038/s41579-018-0029-9.

10. Zhou Y, Xu ZZ, He Y, Yang Y, Liu L, Lin Q, Nie Y, Li M, Zhi F, Liu S, Amir
A, González A, Tripathi A, Chen M, Wu GD, Knight R, Zhou H, Chen Y. 2018.
Gut microbiota offers universal biomarkers across ethnicity in inflammatory
bowel disease diagnosis and infliximab response prediction. mSystems
3:e00188-17. https://doi.org/10.1128/mSystems.00188-17.

11. Loomba R, Seguritan V, Li W, Long T, Klitgord N, Bhatt A, Dulai PS, Caussy
C, Bettencourt R, Highlander SK, Jones MB, Sirlin CB, Schnabl B, Brinkac
L, Schork N, Chen C-H, Brenner DA, Biggs W, Yooseph S, Venter JC,
Nelson KE. 2017. Gut microbiome-based metagenomic signature for
non-invasive detection of advanced fibrosis in human nonalcoholic
fatty liver disease. Cell Metab 25:1054 –1062.e5. https://doi.org/10
.1016/j.cmet.2017.04.001.

12. Sze MA, Schloss PD. 2016. Looking for a signal in the noise: revisiting
obesity and the microbiome. mBio 7:e01018-16. https://doi.org/10.1128/
mBio.01018-16.

13. Walters WA, Xu Z, Knight R. 2014. Meta-analyses of human gut microbes
associated with obesity and IBD. FEBS Lett 588:4223– 4233. https://doi
.org/10.1016/j.febslet.2014.09.039.

14. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa
S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen HK, Arumugam M,
Kristiansen K, Voigt AY, Vestergaard H, Hercog R, Costea PI, Kultima JR,
Li J, Jørgensen T, Levenez F, Dore J, MetaHIT consortium. Nielsen HB,
Brunak S, Raes J, Hansen T, Wang J, Ehrlich SD, Bork P, Pedersen O. 2015.
Disentangling type 2 diabetes and metformin treatment signatures in
the human gut microbiota. Nature 528:262–266. https://doi.org/10
.1038/nature15766.

15. Breiman L. 2001. Random forests. Mach Learn 45:5–32. https://doi.org/
10.1023/A:1010933404324.

16. Caruana R, Munson A, Niculescu-Mizil A. 2006. Getting the most out of
ensemble selection, p 828 – 833. In Sixth International Conference on
Data Mining, Hong Kong, China, 18 to 22 December 2006. IEEE, Piscat-
away, NJ.

17. Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG,
Bushman FD, Knight R, Kelley ST. 2011. Bayesian community-wide
culture-independent microbial source tracking. Nat Methods 8:761–763.
https://doi.org/10.1038/nmeth.1650.

18. Yazdani M, Taylor BC, Debelius JW, Li W, Knight R, Smarr L. 2016. Using
machine learning to identify major shifts in human gut microbiome
protein family abundance in disease, p 1272–1280. In 2016 IEEE Inter-
national Conference on Big Data (Big Data), Washington, DC. IEEE,
Piscataway, NJ.

19. Vázquez-Baeza Y, Hyde ER, Suchodolski JS, Knight R. 2016. Dog and
human inflammatory bowel disease rely on overlapping yet distinct
dysbiosis networks. Nat Microbiol 1:16177. https://doi.org/10.1038/
nmicrobiol.2016.177.

20. Borg I, Groenen P. 2003. Modern multidimensional scaling: theory and
applications. J Educational Measurement 40:277–280. https://doi.org/10
.1111/j.1745-3984.2003.tb01108.x.

21. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE,
Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ,

Turnbaugh PJ. 2014. Diet rapidly and reproducibly alters the human gut
microbiome. Nature 505:559 –563. https://doi.org/10.1038/nature12820.

22. Esko T, Hirschhorn JN, Feldman HA, Hsu Y-H, Deik AA, Clish CB, Ebbeling
CB, Ludwig DS. 2017. Metabolomic profiles as reliable biomarkers of
dietary composition. Am J Clin Nutr 105:547–554. https://doi.org/10
.3945/ajcn.116.144428.

23. Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu
Z, Kightley EP, Thompson LR, Hyde ER, Gonzalez A, Knight R. 2017.
Deblur rapidly resolves single-nucleotide community sequence patterns.
mSystems 2:e00191-16. https://doi.org/10.1128/mSystems.00191-16.

24. Anderson MJ. 2017. Permutational multivariate analysis of variance (PER-
MANOVA), p 1–15. Wiley, Hoboken, NJ.

25. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan
TW-M, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J,
Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD,
Thaden JJ, Viant MR. 2007. Proposed minimum reporting standards for
chemical analysis. Metabolomics 3:211–221. https://doi.org/10.1007/
s11306-007-0082-2.

26. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. 1993.
Hypercholesterolemia in low density lipoprotein receptor knockout mice
and its reversal by adenovirus-mediated gene delivery. J Clin Invest
92:883– 893. https://doi.org/10.1172/JCI116663.

27. Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM, Maeda N. 1992. Gen-
eration of mice carrying a mutant apolipoprotein E gene inactivated by
gene targeting in embryonic stem cells. Proc Natl Acad Sci U S A
89:4471– 4475. https://doi.org/10.1073/pnas.89.10.4471.

28. Yeadon J. November 2013. Which JAX mouse model is best for athero-
sclerosis studies: Apoe or Ldlr knockout mice? https://www.jax.org/news
-and-insights/jax-blog/2013/november/which-jax-mouse-model-is-best
-for-atherosclerosis-studies-apoe-or-ldlr-knoc.

29. Ericsson AC, Gagliardi J, Bouhan D, Spollen WG, Givan SA, Franklin CL.
2018. The influence of caging, bedding, and diet on the composition of
the microbiota in different regions of the mouse gut. Sci Rep 8:4065.
https://doi.org/10.1038/s41598-018-21986-7.

30. Kim D, Hofstaedter CE, Zhao C, Mattei L, Tanes C, Clarke E, Lauder A,
Sherrill-Mix S, Chehoud C, Kelsen J, Conrad M, Collman RG, Baldassano
R, Bushman FD, Bittinger K. 2017. Optimizing methods and dodging
pitfalls in microbiome research. Microbiome 5:52. https://doi.org/10
.1186/s40168-017-0267-5.

31. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW,
Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenk-
ovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC,
Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI.
2013. Gut microbiota from twins discordant for obesity modulate me-
tabolism in mice. Science 341:1241214. https://doi.org/10.1126/science
.1241214.

32. Moreno-Indias I, Torres M, Montserrat JM, Sanchez-Alcoholado L, Car-
dona F, Tinahones FJ, Gozal D, Poroyko VA, Navajas D, Queipo-Ortuño
MI, Farré R. 2015. Intermittent hypoxia alters gut microbiota diversity in
a mouse model of sleep apnoea. Eur Respir J 45:1055–1065. https://doi
.org/10.1183/09031936.00184314.

33. Lucking EF, O’Connor KM, Strain CR, Fouhy F, Bastiaanssen TFS, Burns
DP, Golubeva AV, Stanton C, Clarke G, Cryan JF, O’Halloran KD. 2018.
Chronic intermittent hypoxia disrupts cardiorespiratory homeostasis and
gut microbiota composition in adult male guinea-pigs. EBioMedicine
38:191–205. https://doi.org/10.1016/j.ebiom.2018.11.010.

34. Durgan DJ, Ganesh BP, Cope JL, Ajami NJ, Phillips SC, Petrosino JF,
Hollister EB, Bryan RM, Jr. 2016. Role of the gut microbiome in obstruc-
tive sleep apnea-induced hypertension. Hypertension 67:469 – 474.
https://doi.org/10.1161/HYPERTENSIONAHA.115.06672.

35. Tian YM, Guan Y, Tian SY, Yuan F, Zhang L, Zhang Y. 2018. Short-term
chronic intermittent hypobaric hypoxia alters gut microbiota composi-
tion in rats. Biomed Environ Sci 31:898 –901. https://doi.org/10.3967/
bes2018.122.

36. Xing J, Ying Y, Mao C, Liu Y, Wang T, Zhao Q, Zhang X, Yan F, Zhang H.
2018. Hypoxia induces senescence of bone marrow mesenchymal stem
cells via altered gut microbiota. Nat Commun 9:2020. https://doi.org/10
.1038/s41467-018-04453-9.

37. Luo Y, Chen G-L, Hannemann N, Ipseiz N, Krönke G, Bäuerle T, Munos L,
Wirtz S, Schett G, Bozec A. 2015. Microbiota from obese mice regulate
hematopoietic stem cell differentiation by altering the bone niche. Cell
Metab 22:886 – 894. https://doi.org/10.1016/j.cmet.2015.08.020.

38. Kasselman LJ, Vernice NA, DeLeon J, Reiss AB. 2018. The gut microbiome
and elevated cardiovascular risk in obesity and autoimmunity. Athero-

Reproducible Gut Perturbations in Sleep Apnea Models

March/April 2019 Volume 4 Issue 2 e00058-19 msystems.asm.org 11

 on O
ctober 25, 2020 by guest

http://m
system

s.asm
.org/

D
ow

nloaded from
 

https://doi.org/10.1165/rcmb.2017-0086OC
https://doi.org/10.1165/rcmb.2017-0086OC
https://doi.org/10.3978/j.issn.2072-1439.2012.01.06
https://doi.org/10.1038/laban.1222
https://doi.org/10.1016/j.drudis.2018.06.005
https://doi.org/10.1016/j.drudis.2018.06.005
https://doi.org/10.1016/j.cell.2014.06.037
https://doi.org/10.1038/s41579-018-0029-9
https://doi.org/10.1128/mSystems.00188-17
https://doi.org/10.1016/j.cmet.2017.04.001
https://doi.org/10.1016/j.cmet.2017.04.001
https://doi.org/10.1128/mBio.01018-16
https://doi.org/10.1128/mBio.01018-16
https://doi.org/10.1016/j.febslet.2014.09.039
https://doi.org/10.1016/j.febslet.2014.09.039
https://doi.org/10.1038/nature15766
https://doi.org/10.1038/nature15766
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1038/nmeth.1650
https://doi.org/10.1038/nmicrobiol.2016.177
https://doi.org/10.1038/nmicrobiol.2016.177
https://doi.org/10.1111/j.1745-3984.2003.tb01108.x
https://doi.org/10.1111/j.1745-3984.2003.tb01108.x
https://doi.org/10.1038/nature12820
https://doi.org/10.3945/ajcn.116.144428
https://doi.org/10.3945/ajcn.116.144428
https://doi.org/10.1128/mSystems.00191-16
https://doi.org/10.1007/s11306-007-0082-2
https://doi.org/10.1007/s11306-007-0082-2
https://doi.org/10.1172/JCI116663
https://doi.org/10.1073/pnas.89.10.4471
https://www.jax.org/news-and-insights/jax-blog/2013/november/which-jax-mouse-model-is-best-for-atherosclerosis-studies-apoe-or-ldlr-knoc
https://www.jax.org/news-and-insights/jax-blog/2013/november/which-jax-mouse-model-is-best-for-atherosclerosis-studies-apoe-or-ldlr-knoc
https://www.jax.org/news-and-insights/jax-blog/2013/november/which-jax-mouse-model-is-best-for-atherosclerosis-studies-apoe-or-ldlr-knoc
https://doi.org/10.1038/s41598-018-21986-7
https://doi.org/10.1186/s40168-017-0267-5
https://doi.org/10.1186/s40168-017-0267-5
https://doi.org/10.1126/science.1241214
https://doi.org/10.1126/science.1241214
https://doi.org/10.1183/09031936.00184314
https://doi.org/10.1183/09031936.00184314
https://doi.org/10.1016/j.ebiom.2018.11.010
https://doi.org/10.1161/HYPERTENSIONAHA.115.06672
https://doi.org/10.3967/bes2018.122
https://doi.org/10.3967/bes2018.122
https://doi.org/10.1038/s41467-018-04453-9
https://doi.org/10.1038/s41467-018-04453-9
https://doi.org/10.1016/j.cmet.2015.08.020
https://msystems.asm.org
http://msystems.asm.org/


sclerosis 271:203–213. https://doi.org/10.1016/j.atherosclerosis.2018.02
.036.

39. Kameyama K, Itoh K. 2014. Intestinal colonization by a Lachnospiraceae
bacterium contributes to the development of diabetes in obese mice.
Microbes Environ 29:427– 430. https://doi.org/10.1264/jsme2.ME14054.

40. Pascal V, Pozuelo M, Borruel N, Casellas F, Campos D, Santiago A,
Martinez X, Varela E, Sarrabayrouse G, Machiels K, Vermeire S, Sokol H,
Guarner F, Manichanh C. 2017. A microbial signature for Crohn’s disease.
Gut 66:813– 822. https://doi.org/10.1136/gutjnl-2016-313235.

41. Wang Y, Jacome-Sosa MM, Ruth MR, Goruk SD, Reaney MJ, Glimm DR,
Wright DC, Vine DF, Field CJ, Proctor SD. 2009. Trans-11 vaccenic acid
reduces hepatic lipogenesis and chylomicron secretion in JCR:LA-cp rats.
J Nutr 139:2049 –2054. https://doi.org/10.3945/jn.109.109488.

42. Schaap FG, Trauner M, Jansen P. 2014. Bile acid receptors as targets for
drug development. Nat Rev Gastroenterol Hepatol 11:55– 67. https://doi
.org/10.1038/nrgastro.2013.151.

43. Perino A, Schoonjans K. 2015. TGR5 and immunometabolism: insights
from physiology and pharmacology. Trends Pharmacol Sci 36:847– 857.
https://doi.org/10.1016/j.tips.2015.08.002.

44. Zarrinpar A, Loomba R. 2012. The emerging interplay among the gas-
trointestinal tract, bile acids and incretins in the pathogenesis of diabe-
tes and non-alcoholic fatty liver disease. Aliment Pharmacol Ther 36:
909 –921. https://doi.org/10.1111/apt.12084.

45. Broeders EPM, Nascimento EBM, Havekes B, Brans B, Roumans KHM,
Tailleux A, Schaart G, Kouach M, Charton J, Deprez B, Bouvy ND, Mot-
taghy F, Staels B, van Marken Lichtenbelt WD, Schrauwen P. 2015. The
bile acid chenodeoxycholic acid increases human brown adipose tissue
activity. Cell Metab 22:418 – 426. https://doi.org/10.1016/j.cmet.2015.07
.002.

46. Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo
A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J,
Schoonjans K. 2009. TGR5-mediated bile acid sensing controls glucose
homeostasis. Cell Metab 10:167–177. https://doi.org/10.1016/j.cmet
.2009.08.001.

47. Joyce SA, Gahan C. 2017. Disease-associated changes in bile acid profiles
and links to altered gut microbiota. Dig Dis 35:169 –177. https://doi.org/
10.1159/000450907.

48. National Research Council. 2011. Guide for the care and use of labora-
tory animals, 8th ed. National Academies Press, Washington, DC.

49. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N,
Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G,
Knight R. 2012. Ultra-high-throughput microbial community analysis on
the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://
doi.org/10.1038/ismej.2012.8.

50. Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vázquez-Baeza
Y, Ackermann G, DeReus J, Janssen S, Swafford AD, Orchanian SB,
Sanders JG, Shorenstein J, Holste H, Petrus S, Robbins-Pianka A, Brislawn
CJ, Wang M, Rideout JR, Bolyen E, Dillon M, Caporaso JG, Dorrestein PC,
Knight R. 2018. Qiita: rapid, web-enabled microbiome meta-analysis. Nat
Methods 15:796 –798. https://doi.org/10.1038/s41592-018-0141-9.

51. McDonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J, Wen-
del D, Wilke A, Huse S, Hufnagle J, Meyer F, Knight R, Caporaso JG. 2012.
The Biological Observation Matrix (BIOM) format or: how I learned to
stop worrying and love the ome-ome. Gigascience 1:7. https://doi.org/
10.1186/2047-217X-1-7.

52. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD,
Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley
ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD,
Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J,
Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of
high-throughput community sequencing data. Nat Methods 7:335–336.
https://doi.org/10.1038/nmeth.f.303.

53. Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Lozupone C,
Zaneveld JR, Vázquez-Baeza Y, Birmingham A, Hyde ER, Knight R. 2017.
Normalization and microbial differential abundance strategies depend
upon data characteristics. Microbiome 5:27. https://doi.org/10.1186/
s40168-017-0237-y.

54. Mirarab S, Nguyen N, Warnow T. 2011. SEPP: SATé-Enabled Phylogenetic
Placement. Pac Symp Biocomput 2012:247–258.

55. Adusumilli R, Mallick P. 2017. Data conversion with ProteoWizard
msConvert. Methods Mol Biol 1550:339 –368. https://doi.org/10.1007/
978-1-4939-6747-6_23.

56. Mirzaei H, Carrasco M. 2016. Modern proteomics—sample preparation,
analysis and practical applications. Springer, New York, NY.

57. Katajamaa M, Miettinen J, Oresic M. 2006. MZmine: toolbox for process-
ing and visualization of mass spectrometry based molecular profile data.
Bioinformatics 22:634 – 636. https://doi.org/10.1093/bioinformatics/btk
039.

58. Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, van der
Voort M, Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J,
Bandeira N, Dorrestein PC. 2012. Mass spectral molecular networking of
living microbial colonies. Proc Natl Acad Sci U S A 109:E1743–E1752.
https://doi.org/10.1073/pnas.1203689109.

59. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD,
Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik
AV, Meehan MJ, Liu W-T, Crüsemann M, Boudreau PD, Esquenazi E,
Sandoval-Calderón M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu
C-C, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D,
Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P,
Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw C-C, Yang Y-L,
Humpf H-U, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom
AM, Sedio BE, et al. 2016. Sharing and community curation of mass
spectrometry data with Global Natural Products Social Molecular Net-
working. Nat Biotechnol 34:828 – 837. https://doi.org/10.1038/nbt.3597.

60. Guo W, Sarkar SK, Peddada SD. 2010. Controlling false discoveries in
multidimensional directional decisions, with applications to gene ex-
pression data on ordered categories. Biometrics 66:485– 492. https://doi
.org/10.1111/j.1541-0420.2009.01292.x.

61. Cohen J. 1992. A power primer. Psychol Bull 112:155–159. https://doi
.org/10.1037/0033-2909.112.1.155.

Tripathi et al.

March/April 2019 Volume 4 Issue 2 e00058-19 msystems.asm.org 12

 on O
ctober 25, 2020 by guest

http://m
system

s.asm
.org/

D
ow

nloaded from
 

https://doi.org/10.1016/j.atherosclerosis.2018.02.036
https://doi.org/10.1016/j.atherosclerosis.2018.02.036
https://doi.org/10.1264/jsme2.ME14054
https://doi.org/10.1136/gutjnl-2016-313235
https://doi.org/10.3945/jn.109.109488
https://doi.org/10.1038/nrgastro.2013.151
https://doi.org/10.1038/nrgastro.2013.151
https://doi.org/10.1016/j.tips.2015.08.002
https://doi.org/10.1111/apt.12084
https://doi.org/10.1016/j.cmet.2015.07.002
https://doi.org/10.1016/j.cmet.2015.07.002
https://doi.org/10.1016/j.cmet.2009.08.001
https://doi.org/10.1016/j.cmet.2009.08.001
https://doi.org/10.1159/000450907
https://doi.org/10.1159/000450907
https://doi.org/10.1038/ismej.2012.8
https://doi.org/10.1038/ismej.2012.8
https://doi.org/10.1038/s41592-018-0141-9
https://doi.org/10.1186/2047-217X-1-7
https://doi.org/10.1186/2047-217X-1-7
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1186/s40168-017-0237-y
https://doi.org/10.1186/s40168-017-0237-y
https://doi.org/10.1007/978-1-4939-6747-6_23
https://doi.org/10.1007/978-1-4939-6747-6_23
https://doi.org/10.1093/bioinformatics/btk039
https://doi.org/10.1093/bioinformatics/btk039
https://doi.org/10.1073/pnas.1203689109
https://doi.org/10.1038/nbt.3597
https://doi.org/10.1111/j.1541-0420.2009.01292.x
https://doi.org/10.1111/j.1541-0420.2009.01292.x
https://doi.org/10.1037/0033-2909.112.1.155
https://doi.org/10.1037/0033-2909.112.1.155
https://msystems.asm.org
http://msystems.asm.org/

