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ABSTRACT Marine and freshwater microbial communities are phylogenetically dis-
tinct, and transitions between habitat types are thought to be infrequent. We com-
pared the phylogenetic diversity of marine and freshwater microorganisms and iden-
tified specific lineages exhibiting notably high or low similarity between marine and
freshwater ecosystems using a meta-analysis of 16S rRNA gene tag-sequencing data
sets. As expected, marine and freshwater microbial communities differed in the rela-
tive abundance of major phyla and contained habitat-specific lineages. At the same
time, and contrary to expectations, many shared taxa were observed in both habi-
tats. Based on several metrics, we found that Gammaproteobacteria, Alphaproteobac-
teria, Bacteroidetes, and Betaproteobacteria contained the highest number of closely
related marine and freshwater sequences, suggesting comparatively recent habitat
transitions in these groups. Using the abundant alphaproteobacterial group SAR11
as an example, we found evidence that new lineages, beyond the recognized LD12
clade, are detected in freshwater at low but reproducible abundances; this evidence
extends beyond the 16S rRNA locus to core genes throughout the genome. Our re-
sults suggest that shared taxa are numerous, but tend to occur sporadically and at
low relative abundance in one habitat type, leading to an underestimation of transi-
tion frequency between marine and freshwater habitats. Rare taxa with abundances
near or below detection, including lineages that appear to have crossed the salty di-
vide relatively recently, may possess adaptations enabling them to exploit opportu-
nities for niche expansion when environments are disturbed or conditions change.

IMPORTANCE The distribution of microbial diversity across environments yields in-
sight into processes that create and maintain this diversity as well as potential to in-
fer how communities will respond to future environmental changes. We integrated
data sets from dozens of freshwater lake and marine samples to compare diversity
across open water habitats differing in salinity. Our novel combination of sequence-
based approaches revealed lineages that likely experienced a recent transition across
habitat types. These taxa are promising targets for studying physiological constraints
on salinity tolerance. Our findings contribute to understanding the ecological and
evolutionary controls on microbial distributions, and open up new questions regard-
ing the plasticity and adaptability of particular lineages.

KEYWORDS 16S rRNA, SAR11, aquatic ecology, aquatic microbiology, biogeography,
environmental transitions, microbial ecology, tag sequencing

Phylogenetic relationships of organisms within and across ecosystems can provide
insight into the evolutionary history of lineages and how evolution might proceed

into the future. Microorganisms in the water columns of freshwater and marine
ecosystems provide a unique juxtaposition. On one hand, these habitats share common
features of pelagic lifestyles like free-living and particle-associated niches (1), potential
for interactions with phytoplankton (2), and opportunities for diverse photohetero-
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trophic organisms, including aerobic anoxygenic phototrophs (3) and rhodopsin-
containing bacteria (4, 5). However, salinity preference is considered a complex trait
involving many genes and complex cellular integration (6, 7), suggesting that transi-
tions between high and low salinity are difficult from a genetic perspective. Consistent
with this idea, microbial communities from saline environments are compositionally
distinct from those inhabiting nonsaline environments (8, 9). Salinity-induced shifts in
microbial beta diversity have been observed in studies of marine-to-freshwater gradi-
ents in many systems, including the Baltic Sea (7, 10), Columbia River Estuary system
(11), and Antarctic lakes that have become progressively less saline since becoming
isolated from the sea (12). These observations of ecosystem-specific diversity support
the current paradigm that transitions between marine and freshwater ecosystems are
infrequent, despite many ecological similarities (13).

Environmental sequence data provide support for a “salty divide” separating marine
and freshwater microbial assemblages. From a phylogenetic perspective, each clade
that contains both marine and freshwater representatives includes at least one transi-
tion where a common ancestor gave rise to a daughter lineage able to survive and
proliferate in a new salinity environment (13). Transitions that occurred recently are
expected to result in highly similar molecular sequences recovered from marine and
freshwater systems while transitions that occurred in the distant past are expected to
yield habitat-specific diversification— clades that are only observed in one habitat type
or the other—and a greater sequence divergence between marine and freshwater
representatives (13). Prior work using phylogenetic patterns concluded that transitions
between marine and freshwater environments are infrequent and most transition
events occurred a long time ago in evolutionary terms (13, 14). For example, Logares
and colleagues (14) found that within the abundant alphaproteobacterial SAR11 group,
freshwater representatives belonged exclusively to a single subclade, called LD12,
implying a single salinity transition from a marine ancestor to this freshwater lineage.
Besides LD12, there are a number of microbial lineages that appear to be unique to
freshwater lakes (15, 16), suggesting that these lineages do not readily colonize other
habitat types. Notably, for freshwater lineages that are found in multiple habitats, the
secondary habitat is most often terrestrial, not marine (16), consistent with the idea that
marine-freshwater transitions are especially difficult.

Difficulty in detecting transitions between marine and freshwater systems may
contribute to the paradigm that transitions occur infrequently. Detecting a transition
requires sufficiently abundant extant descendants. Most immigrant cells are expected
to go extinct locally due to ecological drift, just as most mutations are lost from a
population due to genetic drift (17). The probability of an immigrant avoiding extinc-
tion due to ecological drift, like a mutation avoiding genetic drift, depends on the
degree of selective advantage. For example, in populations of Escherichia coli (�3 � 107

cells [18]), a mutation conferring a 10% advantage appears an average of five times
before it is established compared to a mutation with a 0.1% advantage which would
need to appear 500 times to avoid extinction by drift (19). In addition to overcoming
ecological drift, the degree of selective advantage for cells migrating between marine
and freshwater habitats would need to be strong enough to overcome any salinity-
based disadvantages. Microorganisms that become established must also achieve
sufficiently high population abundances to be reliably detected by current sequencing
methods. As amplicon sequencing data sets accumulate from an increased diversity of
environments and library size increases, our ability to detect transitions improves.

Here we revisit classic questions concerning divisions between marine and fresh-
water microorganisms by comparing 16S rRNA V4 region amplicon sequences from
available marine and freshwater data sets. This meta-analysis is timely given the
accumulation of sequence data sets from diverse aquatic environments, including large
lakes such as the Laurentian Great Lakes that historically have been underrepresented
in sequence databases. These large lakes, sometimes referred to as inland seas, are in
some ways more similar to the open oceans than to previously studied small lakes (20).
Given their size, they are less influenced by their catchment than smaller lakes and
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experience oceanic-type physical processes, including strong currents and upwelling
(21). Although lakes are generally more productive than the open oceans, parts of the
Laurentian Great Lakes are extremely oligotrophic, rivaling the ocean gyres in terms of
phosphorus limitation and productivity (22–25). Given these features, we speculated
that the Great Lakes would be more likely than small lakes to harbor lineages recently
descended from marine ancestors. At a minimum, we reasoned that expanding within-
habitat diversity in our comparative analysis would improve the robustness of our
conclusions between habitat types. Our specific objectives were to (i) compare the
phylogenetic diversity of marine and freshwater microorganisms and (ii) identify lin-
eages that have a comparatively high or low degree of sequence similarity between
marine and freshwater ecosystems. These lineages may represent targets for exploring
physiological and molecular barriers to salinity tolerance, and for identifying novel
strategies for overcoming these barriers.

(This article was submitted to an online preprint archive [26].)

RESULTS
Marine and freshwater communities have distinct taxonomic composition. We

first asked whether marine and freshwater communities were compositionally distinct
in our combined data set, consistent with previous studies. To this end, we compared
the abundances of phyla (classes for Proteobacteria), orders, and families between
marine and freshwater samples. At the phylum level, Alphaproteobacteria, Gammapro-
teobacteria, Euryarchaeota, and Marinimicrobia had significantly higher relative abun-
dances in marine systems while Betaproteobacteria and Verrucomicrobia had higher
relative abundances in freshwater systems (Fig. 1). At finer taxonomic levels, we found
that orders, and especially families, showed a positive correlation between relative
abundance in freshwater and fold enrichment in freshwater versus marine samples, and
vice versa; in other words, the most abundant freshwater families also appeared to be
highly specific to freshwater, while numerous other families have similar abundances in
marine and freshwater systems (see Fig. S1 in the supplemental material).

We next took a taxon-level approach, using minimum entropy decomposition (MED
[27]) to cluster sequences into taxonomic units (i.e., MED nodes) and UniFrac distances
to compare assemblages of marine and freshwater nodes. Consistent with previous
studies, we found that marine and freshwater assemblages were phylogenetically
distinct (Fig. S2; weighted UniFrac PerMANOVA, F � 23.6, R2 � 0.24, P � 0.001, df � 75;
unweighted UniFrac PerMANOVA, F � 41.8, R2 � 0.36, P � 0.001, df � 75). This result is
robust even with our expanded data set, suggesting that environmental factors such as
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FIG 1 Median relative abundance of phyla/proteobacterial classes in freshwater and marine samples collected from surface (a) and deep
(b) waters. The deepest hypolimnion (below thermocline) sample collected from stratified lakes and marine samples collected at depths
�75m were classified as “deep” samples. Diagonal lines indicate a 1:1 relationship.
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nutrient availability and temperature are secondary to salinity in driving overall com-
munity composition (Fig. S2b).

Phylogenetic distance between marine and freshwater taxa. We next asked
whether particular phyla, orders, and families tended to include closely related marine
and freshwater representatives more often than others, reflecting more recent habitat
transitions in these groups. Using UniFrac distances between marine and freshwater
taxa (MED nodes) as a metric, calculated either pairwise between samples or together
with all samples pooled, we found distances generally fell between 0.75 and 0.90 for
each phylum (Fig. S3A). For individual orders and families, marine-freshwater distances
spanned a greater range (Fig. S3; Table S1). Together, these results indicate that closely
related marine and freshwater taxa can be found in most phyla, but they are not
distributed uniformly across orders and families within those phyla; rather, some orders
and families tend to be enriched in instances of closely related marine and freshwater
taxa and therefore in putative recent transitions. For example, gammaproteobacterial
families Chromatiaceae and Vibrionaceae and actinobacterial families PeM15 and My-
cobacteriaceae had the smallest unweighted UniFrac distances (�0.55) between marine
and freshwater taxa, suggesting that marine and freshwater lineages tend to be more
closely related in these groups. In contrast, Hydrogenophilaceae (Betaproteobacteria)
and KI89A (Gammaproteobacteria) each had UniFrac distances of 1.00 (Table S1),
indicating that marine and freshwater lineages we detected within these families were
completely distinct phylogenetically.

At the finest taxonomic level, MED nodes, we observed 171 total shared MED nodes,
i.e., nodes detected in at least one marine sample and one freshwater sample (Table 1;
Fig. S4). For some phyla, our observations of shared taxa have saturated, while we
expect to detect new shared taxa in other phyla with greater sampling effort (Fig. 2;
Fig. S5). Betaproteobacteria and Gammaproteobacteria showed the largest increases in

TABLE 1 Genera containing at least two shared MED nodes

Phylum/class Order Family Genusb

No. of
shared
nodes

Actinobacteria Acidimicrobiales OM1_clade “Ca. Actinomarina” 2
Actinobacteria Acidimicrobiales Sva0996a Sva0996a 2
Actinobacteria Corynebacteriales Mycobacteriaceae Mycobacterium 2
Actinobacteria Micrococcales Microbacteriaceae “Ca. Aquiluna” 4
Actinobacteria PeM15 PeM15 PeM15 4
Bacteroidetes Flavobacteriales Cryomorphaceae Fluviicola 5
Bacteroidetes Sphingobacteriales Chitinophagaceae Sediminibacterium 2
Bacteroidetes Sphingobacteriales NS11-12a NS11-12a 3
Cyanobacteria Subsection I Family I Synechococcus 3
Marinimicrobia SAR406 clade SAR406 clade SAR406 clade 4
Alphaproteobacteria Caulobacterales Caulobacteraceae Brevundimonas 4
Alphaproteobacteria Rhizobiales Methylobacteriaceae Methylobacterium 3
Alphaproteobacteria Sphingomonadales Sphingomonadaceae Novosphingobium 2
Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingobium 3
Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 3
Betaproteobacteria Burkholderiales Burkholderiaceae Ralstonia 2
Betaproteobacteria Burkholderiales Comamonadaceae Aquabacterium 2
Deltaproteobacteria SAR324 clade SAR324 clade SAR324 clade 3
Gammaproteobacteria Alteromonadales Alteromonadaceae Marinobacter 2
Gammaproteobacteria E01-9C-26a E01-9C-26a E01-9C-26a 2
Gammaproteobacteria Oceanospirillales Oceanospirillaceae Pseudohongiella 4
Gammaproteobacteria Oceanospirillales OM182 clade OM182 clade 2
Gammaproteobacteria Oceanospirillales SAR86 clade SAR86 clade 2
Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter 5
Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 3
Gammaproteobacteria Vibrionales Vibrionaceae Vibrio 2
Euryarchaeota Thermoplasmatales Marine group II Marine group II 2
Thaumarchaeota Unknown order Unknown family “Ca. Nitrosopumilus” 2
aMarine group.
bCa., Candidatus.
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the proportion of shared nodes as more marine and freshwater sites were sampled,
respectively (Fig. S5). The pronounced increase in the proportion of betaproteobacterial
shared nodes as more marine (but not freshwater) sites were analyzed indicates that
nodes commonly observed in freshwater are sporadically detected in marine systems,
and vice versa for Gammaproteobacteria. Gammaproteobacteria contained the most
shared nodes, which accounted for 10% and 33% of total gammaproteobacterial nodes
observed in marine and freshwater systems, respectively. Alphaproteobacteria con-
tained the second highest number of shared nodes, accounting for 7% and 14% of total
alphaproteobacterial nodes observed in marine and freshwater systems, respectively.

Direct sequence-level comparisons reveal variation across phyla. To quantify
differences among phyla in their marine-freshwater transition history, we sought to
compare all sequences in our data set using a fundamental metric—sequence
identity—without assigning sequences to MED nodes or operational units. For each
phylum, we constructed an all-versus-all distance matrix using pooled sequences from
all samples, and clustered this matrix using every possible sequence identity threshold
(to form 99.6% clusters, 99.3%, 99.0%, etc., given an amplicon size of 290 bp). Then, for
all pairwise combinations of one marine and one freshwater sample (i.e., all marine-
freshwater sample pairs), we identified the highest cluster threshold at which the two
samples shared sequences in the same cluster (Fig. S6). We interpreted this threshold
as a phylum-specific proxy for time since the most recent marine-freshwater transition:
for example, finding 100% identical sequences in a marine and freshwater sample pair
would imply a very recent transition event, whereas a cluster threshold of only 70%
identity would imply a deep branching split into exclusively marine and freshwater
clades (in other words, sequence clusters at all cutoffs greater than 70% would consist
of exclusively marine or freshwater members). We summarized this identity threshold
for each major phylum (class for Proteobacteria) and across all pairwise sample com-
parisons.

Using this approach, we found that most phyla contained shared taxa at identity
thresholds �99% for at least some pairs of marine and freshwater samples (Fig. 3). This
result is not due to a few particular samples that tended to share taxa more frequently.
Instead, it suggests that recent marine-freshwater transitions are phylogenetically and
geographically widespread. At the same time, however, we also found substantial
variation across phyla: some phyla showed widespread evidence for recent transitions
across all sample pairs, while other phyla showed sporadic or no evidence for recent
transitions (Fig. 3; Fig. S6 and S7). Within the Alpha- and Betaproteobacteria, for
example, sequences typically were shared between marine and freshwater samples
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increases (b). The percentage of sequences shared between habitats with all sites analyzed is included to the right of each
curve; the total number of MED nodes within each group in freshwater and marine habitats, respectively, is indicated in
parentheses.

Marine-Freshwater Phylogenetic Specificity

November/December 2018 Volume 3 Issue 6 e00232-18 msystems.asm.org 5

 on O
ctober 22, 2019 by guest

http://m
system

s.asm
.org/

D
ow

nloaded from
 

msystems.asm.org
http://msystems.asm.org/


with 96% identity (median value for all pairwise sample comparisons). At the other
extreme, no Nitrospirae sequences were found to be shared between marine and
freshwater samples at �89% identity. In addition, sequences from Chloroflexi, Euryar-
chaeota, and Chlorobi were rarely shared between marine and freshwater samples at
�77% identity.

Genome-wide evidence for recent marine-freshwater transitions in the SAR11
group. Given these overall phylogenetic patterns of marine-freshwater transitions, we
sought to illustrate the implications for a single taxonomic group as a case study. We
chose to focus on the SAR11 group of Alphaproteobacteria because representatives of
this group are extremely abundant in both marine and freshwater systems, providing
ample data in both habitat types. Further, this group has been the focus of a prior study
which found that all freshwater SAR11 fell within the LD12 clade, reflecting a single
major transition (14). Unexpectedly, our analysis detected several instances where
non-LD12 SAR11 taxa (MED nodes) were found in freshwater: clades surface 1 and
surface 2 were observed in a humic lake, an estuarine clade was observed in a Tibetan
Plateau lake, and an unclassified SAR11 clade was observed in the Laurentian Great
Lakes (Fig. 4a). Like many of the shared nodes in our data set, the marine (i.e.,
non-LD12) SAR11 shared nodes were detected at very low abundances in freshwater.
One of the shared nodes was observed in the Laurentian Great Lakes, a system where
we have been collecting microbial community data for several years, so we expanded
our search for non-LD12 SAR11 to our larger data set, beyond the eleven samples
initially included in the meta-analysis. Based on data sets acquired with the 515F/806R
primer set, which is known to bias against the SAR11 clade (28), this non-LD12 SAR11
node accounted for 1 to 15 sequences out of an average of approximately 75,000
sequences per sample (Fig. 4b). The distribution of this node appears to be restricted
to the hypolimnion during summer stratification; we detected it in surface samples only
during spring sampling when the lakes were mixing.

We reasoned that if these typically marine SAR11 lineages were truly inhabiting the
Great Lakes, we would expect to find genome-wide evidence beyond 16S rRNA. To test
this, we extracted metagenome reads from the Great Lakes representing Pelagibacte-
rales core genes and classified these reads into SAR11 clades using pplacer. We then
quantified the relative abundance of classical freshwater LD12 and marine (non-LD12)
clades based on this metagenome approach. For each metagenome analyzed, 59% of
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sequences within a typical (median) protein cluster could be classified as either LD12
or marine (non-LD12) SAR11 at a likelihood of 0.95. Of the classified sequences, 11 to
12% (median value across all protein clusters) were classified as marine SAR11 in each
of the Great Lakes samples; for comparison, 98% were classified as marine SAR11 in a
marine sample from the Tara Oceans expedition (Fig. 5; Fig. S8). Across protein clusters,
the fraction of sequences classified as marine (non-LD12) SAR11 was much more
variable for Great Lakes samples (range 0 to 57%, interquartile range 6 to 18%) than for
the marine sample (range 76 to 100%, interquartile range 96 to 99%). We identified 199
protein clusters with more than 5% of sequence reads classified as marine (non-LD12)
SAR11 in all five Great Lakes metagenomes, suggesting that a substantial fraction of
Great Lakes SAR11 cells resemble their marine cousins throughout their genomes, not
just at the level of the 16S rRNA gene.

DISCUSSION

Our meta-analysis sought to use newly available data sets, as well as new analyses,
to revisit the paradigm of infrequent transitions between marine and freshwater
habitats and identify lineages that may cross the salinity divide with higher or lower
frequency than average. We found that marine and freshwater microbial communities
were phylogenetically distinct at various phylogenetic resolutions, consistent with the
conclusion of Lozupone and Knight (8) and Thompson and colleagues (9) that salinity
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is the major environmental determinant separating free-living bacteria from different
environments. Further, our finding of higher relative abundances of Betaproteobacteria
and Actinobacteria in lakes and higher relative abundances of Alphaproteobacteria and
Gammaproteobacteria in marine systems corresponds with taxonomic comparisons
made using metagenomic sequence data sets (29) as well as previous observations
using 16S rRNA sequences (16, 30).

Taxonomic groups with comparatively high transition frequency. We used
multiple approaches to compare relative marine-freshwater transition frequency across
phylogenetic groups, based on two key assumptions: (i) the more similar two se-
quences are, the more recently a common ancestor transitioned between marine and
freshwater habitat types, and (ii) each clade containing shared taxa, including every
shared node, encompasses at least one transition between habitat types. From these
analyses, a coherent picture has begun to emerge. Most phyla contain at least a few
instances of recent transitions, but these recent transitions are not evenly distributed.
Alphaproteobacteria, Betaproteobacteria, Bacteroidetes, Gammaproteobacteria and Acti-
nobacteria were inferred to have the most frequent transitions between marine and
freshwater systems based on the number of shared MED nodes, i.e., taxa detected in
both marine and freshwater systems. Using our direct sequence comparison method,
these phyla also exhibited high (�90%) average identity between nearest marine and
freshwater representatives (Fig. 3). These phyla encompass a variety of aquatic life-
styles, from small streamlined SAR11 cells that harvest low-molecular-weight dissolved
organic matter (31) to particle-attached Bacteroidetes with the ability to degrade
polymers and genes for gliding motility (32). More frequent transitions in these phyla

IIIa

HIMB114

HTCC8051HTCC7211
HTCC1062

HIMB083

HIMB058 II

Ia

Great Lake 
contig

L15
C06

J10

P
20

D
10IIIb

100

100

100100

43

99
94

0.08

%
 o

f s
eq

ue
nc

es
 

id
en

tif
ie

d 
as

  
S

A
R

11
/ L

D
12

40

30

20

10

0
Marine SU MI HU ER ON

a

b

FIG 5 Metagenomic evidence for non-LD12 SAR11 in the Laurentian Great Lakes. (a) Percentage of
classified reads identified as LD12 (green) in an open ocean sample (Marine), compared to marine (i.e.,
non-LD12) SAR11 (blue) in each of the five Laurentian Great Lakes (SU, Superior; MI, Michigan; HU, Huron;
ER, Erie; ON, Ontario). Ridge plots present the distribution of identified reads across all protein clusters
with greater than 100 reads classified as SAR11 or LD12 at a likelihood value of 0.95. (b) Neighbor-joining
consensus tree of 1.2-kb nucleotide sequences from the protein cluster identified as COG2609 (pyruvate
dehydrogenase complex, dehydrogenase E1 component). Strain names are colored based on phyloge-
netic classification within the SAR11 clade: green, LD12 sequences from group IIIb; light blue, group IIIa,
sister group to IIIb; medium blue, all other marine SAR11 clades included in the analysis (Ia, II); black, a
contig assembled from the Lake Erie metagenome. Consensus support values (%) are indicated on
branches.
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may stem, in part, from their abundance: Alphaproteobacteria and Gammaproteobac-
teria are two of the most abundant phyla in marine systems while Actinobacteria,
Betaproteobacteria and Bacteroidetes dominate freshwater lakes, increasing the proba-
bility of dispersal across habitat types.

In addition, particular lineages within these phyla may have evolved traits that
facilitate successful colonization across a range of environments and salinities (e.g.,
through lateral gene transfer [33]). These phyla all include organisms capable of
photoheterotrophy, which may enable microbial cells to persist until conditions arise
that allow population expansion (3, 34–38). A number of aquatic bacterial strains have
also been identified as salinity generalists, including representatives of the Coma-
monadaceae (Betaproteobacteria), Pseudomonadaceae (Gammaproteobacteria), Vibrion-
aceae (Gammaproteobacteria), and Pseudoalteromonadaceae (Gammaproteobacteria)
(39); all four of these families contained shared MED nodes in our meta-analysis (13, 4,
5, and 1 node[s], respectively). Notably, Actinobacteria had lower sequence similarity
between pairs of marine and freshwater samples and contained fewer shared nodes
than the other four major groups. Below-average growth rates (40) and the depen-
dence of some actinobacterial lineages on other bacteria (41) may contribute to
apparent differences in the ability of Actinobacteria and other abundant taxa to
transition between marine and freshwater systems.

Insights from the SAR11 group. Initial evidence pointed to a single marine-
freshwater transition in the evolutionary diversification of SAR11, based on the obser-
vation that all SAR11 detected in freshwater systems belonged to the LD12 clade while
no marine sequences were identified as LD12 (14). Recent findings, including our work,
have begun to blur this picture. The first indication that non-LD12, marine-like SAR11
inhabit lakes came from a recently reconstructed partial genome classified as SAR11
subtype I/II from Lake Baikal (42). Here, we detected distinct marine (non-LD12)
lineages of SAR11 in each of three lake systems: a humic lake in northern Wisconsin, a
Tibetan Plateau lake, and the Laurentian Great Lakes. The same non-LD12 SAR11 node
was detected in Lakes Michigan and Ontario across multiple years, depths, and stations
within each lake, suggesting an established population in this system. Using phyloge-
netic placement of metagenome reads, we found further evidence for non-LD12 SAR11
in the Great Lakes. Most metagenome reads could not be unambiguously classified to
a particular clade, which could indicate that we lack a closely related genome repre-
sentative. The reads that were classified fell into clades Ia and IIIa, a sister group of LD12
(also known as clade IIIb) commonly found in brackish environments (10, 43, 44); they
were not classified with the partial genome from Lake Baikal, implying distinct non-
LD12 lineages in these two large-lake ecosystems. Together these findings provide
robust evidence that non-LD12 SAR11 inhabit freshwater habitats.

As ecological data accumulate, the challenge becomes reconciling the distributions
of specific lineages with their evolutionary history. Comparative genomics suggests
that the LD12 lineage descended from a marine ancestor that lost particular genes
related to osmolyte uptake, consistent with the ecological distribution of LD12 cells in
freshwater and low-salinity brackish environments but not in higher-salinity marine
environments (45, 46). Members of the LD12 clade are also distinguished from their
marine cousins by carbon metabolism pathways (47, 48), though how these changes
are related to freshwater adaptation remains unclear. Our observations of additional
SAR11 lineages in inland lakes (i.e., non-LD12), as well as the recovery of a non-LD12
partial genome from Lake Baikal, raise a number of questions. Do these SAR11 lineages
also possess specific genome adaptations to freshwater, and are these adaptations the
same as or similar to those acquired by LD12? Such adaptations might include gene
gains and losses (33, 46, 48), and also a freshwater-like distribution of protein isoelectric
points (i.e., fewer acidic proteins, more basic proteins) as observed in the Lake Baikal
partial genome (42, 49). Furthermore, are the global dominance of LD12 and the
relative obscurity of other SAR11 lineages in freshwater due to specific genome
features or chance (e.g., LD12 arrived first and filled available niche space)? Is there
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potential for future freshwater population expansions for these lineages? Insight into
these questions may come from whole-genome sequences from these new freshwater
lineages, as well as physiological studies of cultured isolates.

Detection limits and overlooked diversity. Organisms with abundances at or near
the detection limits of current sequencing practices are frequently removed from
analyses that exclude sequences below a specified abundance threshold (27). However,
populations with low representation in sequencing libraries may have unintuitively
large census population sizes in a system. A population with a density of one cell per
ml has a population size of billions of cells in a one-meter-depth layer of a small lake
like Trout Bog and quadrillions of cells in a one-meter-depth layer of Lake Michigan.
Assuming that the probability of sequencing is proportional to cell abundance and
there are 500,000 cells per ml, a sequence from that population will not be detected
74% of the time and a single sequence will be detected 22% of the time from a sample
with 150,000 sequences (slightly higher than any samples included in our meta-
analysis), making the population likely to go unreported. Aquatic systems contain a
systematically overlooked pool of diversity that may harbor organisms that immigrated
from other habitats but have not become dominant in the system. These frequently
overlooked low-abundance taxa may make disproportionately large contributions to
ecosystem function (50) and could serve as a source of taxa available to take advantage
of changing environmental conditions, akin to what Shade and colleagues (51) describe
as “conditionally rare taxa.”

Using 16S rRNA data sets to detect transitions. There are several important
caveats to consider when comparing microbial diversity between habitat types. First,
we can only survey abundant, extant diversity. Analyzing 16S rRNA amplicon data sets
gave us the benefit of deep sequencing relative to other approaches, but the 16S rRNA
gene is not a good marker for differentiating closely related organisms (52). Marine and
freshwater microorganisms classified as “shared” in our analyses may in fact exhibit
substantial habitat-specific genome differentiation, and may be distinguishable as
fine-scale sequence clusters based on the full-length 16S rRNA sequence or another
housekeeping gene. Microbial community composition can also be affected by biases,
including those resulting from DNA extraction method (53) and 16S rRNA gene primer
set (28, 54). Shared taxa could potentially arise due to reagent contamination (55) or
sample cross-contamination (56), but these issues are unlikely to explain our meta-
analysis results, given that samples were processed and sequenced independently for
each study.

Summary. Marine and freshwater systems are phylogenetically distinct, while at the
same time harboring taxa that appear in both environments. Some taxonomic groups
appear to be exclusive to marine or freshwater environments. At the same time, some
taxonomic units appear in both habitat types; we identified 171 shared MED nodes
across marine and freshwater habitats. It remains to be seen whether individual cells
with marine-like or freshwater-like 16S rRNA resemble populations found in the other
habitat genome-wide, or whether there is genomic mosaicism. Families at the ex-
tremes—lineages with a high degree of habitat-specific diversification or a large
number of taxa found in both habitats—may serve as targets for future work investi-
gating ecological plasticity and/or adaptations and the evolution of microbial lineages.
There is clearly precedent and potential for marine and freshwater organisms to
transition between habitats with different salinities and adapt to new environmental
conditions, available resources, and interactions with neighboring organisms. A bank of
near- or below-detection diversity, including cross-system immigrant populations, may
contribute to community genomic diversity via horizontal gene transfer and exploit
opportunities for niche expansion as environmental conditions change.

MATERIALS AND METHODS
16S rRNA sequence processing. We carried out a meta-analysis of marine and freshwater 16S rRNA

gene sequencing data sets spanning the V4 region (Table 2; see also Table S2 in the supplemental
material). For a data set to be included in our analysis, sequence reads needed to encompass bases 515
through 805 of the 16S rRNA gene. We augmented publicly available data sets with samples from the
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Laurentian Great Lakes sequenced by the Joint Genome Institute. Sequence processing was carried out
using mothur v 1.38.1 unless otherwise noted (57). We merged paired sequence reads using make.contigs
and quality filtered single reads using trim.seqs (window size � 50, minimum average quality score � 35). All
sequences were then combined and processed following a modified version of the mothur MiSeq
standard operating protocol accessed 27 September 2016 (58). Screening retained 200- to 300-bp
sequences with no ambiguities and maximum homopolymer stretches fewer than 24 bases. Screened
sequences were aligned to the Silva v128 reference alignment (59, 60), and chimeras were identified
using UCHIME (61) and removed. Sequences were classified in mothur using Silva v128, and those
identified as “Chloroplast,” “Mitochondria,” “unknown,” or “Eukaryota” were removed from the data set.

We used two approaches to cluster similar sequences. First, we implemented minimum entropy
decomposition (MED), a method that employs Shannon entropy to partition sequences into taxonomic
units referred to as “nodes” using information-rich nucleotide positions and ignoring stochastic variation
(27). We ran MED with a minimum substantive abundance of 10 sequences and 4 discriminant locations.
Second, to quantify taxon relatedness based on absolute sequence identity, we implemented direct
comparisons for all sequences within each phylum (proteobacterial class). We calculated pairwise
sequence distances and used farthest-neighbor clustering to cluster sequences at all possible sequence
identity cutoff values, from 100% identity down to the level where all sequences collapse into a single
cluster, at a precision of 1,000. For groups with distance matrices too large to process all sequences
together (Alphaproteobacteria, Bacteroidetes, Betaproteobacteria, Gammaproteobacteria), cluster.split was
implemented at the order level (taxonomic level 4) to group sequences into taxonomic units at cutoff
values from unique down to 0.30. Classification-based cluster splitting was not a feasible approach for
Actinobacteria, so pre.cluster was run on sequences prior to calculating furthest-neighbor clusters.

Statistical and phylogenetic comparisons of marine and freshwater data sets. We compared
marine and freshwater samples and sequences at the levels of taxonomic classification, MED nodes, and
sequence identity using R version 3.3.2 (R Core Team, 2016). Phyla (proteobacterial classes) that were
differentially abundant in marine versus freshwater samples were identified by testing for differences in
the log2 fold change using a parametric Wald test implemented by DESeq2 (62).

To quantify phylogenetic distance between marine and freshwater taxa, we first generated a
maximum-likelihood tree from mothur-aligned sequences using the GTRGAMMA model in RaxML v7.7.9
(63). To visualize subtrees and calculate UniFrac distances for specific groups, bacterial trees were rooted
with a Marine Group I archaeal sequence (A000001667) using the APE R package (64). Trees were
visualized using the interactive Tree Of Life (65). Sequences were rarefied, and data were subset for
subsequent analyses using the phyloseq package (66). We rarefied samples to even depth (9,827
sequences/sample) and calculated unweighted UniFrac distances for each pair of samples using GUni-
Frac (67). We tested the significance of UniFrac distances between marine and freshwater samples using
permutational multivariate analysis of variance (PerMANOVA) as implemented by the Adonis function in
the Vegan package (68). The same approach was used to calculate UniFrac values for each phylum and
proteobacterial class that was observed in at least three marine and three freshwater samples and
contained at least five MED nodes. Samples containing fewer than 500 sequences for a given phylum or
class were removed from the analysis. We combined all sequences from each habitat and calculated

TABLE 2 16S rRNA v4 region sequencing data sets included in the meta-analysis

No. of samples Study system Depth(s) sampleda

BioProject accession no.
(reference)

Freshwater samples (45 total)
11 Four Laurentian Great Lakes Surface, DCL, deep This study
2 Glacier Lake, NY 6 m, 14 m PRJEB12903
1 JBL_J07_HES, Sweden Integrated PRJNA244610 (79)
1 Lake Keluke, China Surface PRJNA294836 (80)
1 Faselfad lakes, Austria Integrated PRJNA297573 (81)
14 Seven high-nutrient lakes, MI Surface, deep PRJNA304344 (82)
9 Five low-nutrient lakes, MI Surface, deep PRJNA304344 (82)
6 Three humic lakes, WI Integrated epi, integrated hypo PRJEB15148 (83)

Marine samples (32 total)
1 Caribbean Sea Surface PRJEB10633 (28)
2 Coastal Red Sea (2 sites) Surface PRJNA279146 (54)
1 Drake Passage Surface PRJEB10633 (28)
12 Gulf of Mexico (3 sites) Surface, multiple depths PRJNA327040 (84)
1 Helgoland North Sea Surface PRJNA266669 (85)
1 Long Island Sound Surface PRJEB10633 (28)
2 North Pacific Surface, 100 m PRJEB10633 (28)
8 San Pedro Ocean Time Series (2 dates: April,

July 2013)
Surface, multiple depths PRJEB10633 (28)

2 Sargasso Sea (2 sites) Surface, 200 m PRJEB10633 (28)
1 Tropical Western Atlantic Ocean 40 m PRJEB10633 (28)
1 Weddell Sea Surface PRJEB10633 (28)

aAbbreviations: DCL, deep chlorophyll layer; epi, epilimnion; hypo, hypolimnion.
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unweighted UniFrac distances for phyla, proteobacterial classes, orders and families using GUniFrac
following sequence rarefaction to even depth. To test the significance of calculated UniFrac values for
each phylum and proteobacterial class, unweighted UniFrac values were calculated for 1,000 indepen-
dent swap randomizations of the presence-absence sample matrix generated by the randomizeMatrix
function in the Picante package (69). Using these distances as a null distribution, one-sample z tests were
conducted to test the null hypothesis that the phylogenetic tree is not grouped by habitat. A Bonferroni
correction was implemented as a conservative measure to account for multiple testing in determining
significance.

We identified “shared nodes” as MED nodes observed in the unrarefied sequence set for at least one
marine and at least one freshwater sample. For each phylum (proteobacterial class) containing more than
five nodes observed in both marine and freshwater samples (i.e., shared nodes), we generated accumu-
lation curves to visualize the number of shared MED nodes as a function of the number of freshwater or
marine sampling sites using the specaccum function in the vegan package (68).

To compare sequence clusters generated at each sequence identity cutoff, we calculated Jaccard
distances for pairs of unrarefied samples (one marine and one freshwater) for each phylum (proteobac-
terial class). The Jaccard distance is calculated as 1 minus the intersection of two samples (i.e., the
number of shared units) divided by the union of two samples (i.e., the total number of units); a Jaccard
distance of 1 means that no taxa are shared between samples. The sequence identity cutoff value at
which marine-freshwater sample pairs first contain shared taxa (Jaccard distance � 1) was summarized
for each phylum/class using boxplots.

Metagenomic evidence of non-LD12 SAR11 in the Great Lakes. To test whether there is
genome-wide evidence beyond the 16S rRNA locus for non-LD12 SAR11 cells in the Great Lakes, we
identified reads that mapped with high confidence to non-LD12 SAR11 in a SAR11/LD12 reference
phylogeny. Briefly, we analyzed merged pairs of metagenome sequencing reads from samples collected
from the surface of each of the Great Lakes in spring 2012 (IMG taxon object IDs: 3300005580,
3300005582, 3300005583, 3300005584, 3300005585) as well as a marine sample from the Tara Oceans
project collected from the North Atlantic Ocean Westerlies Biome near Bermuda for comparison
(accession number ERR599123) (70). Sequence reads from each metagenome were searched against the
nr protein database (71; downloaded 13 April 2017) using Diamond v. 0.8.18.80 (72), and sequences
whose best hit matched the Pelagibacterales family were identified using Krona Tools v. 2.7 (73) and
extracted. These putative Pelagibacterales reads were then mapped to a database of SAR11/LD12 protein
clusters using a translated query-protein subject (blastx) BLAST v. 2.2.28 (74) with E value �0.001 and
alignment length �60 amino acids (�50 amino acids for the Tara Oceans sample since sequence reads
were shorter). We set a liberal E value threshold for this reciprocal BLAST step in order to sensitively map
short metagenomic fragments to protein clusters; in practice, the median E value for mapping reads in
this step was 2 � 10�47, with 99% of query reads yielding E values less than 2 � 10�15 and 99.7% of reads
yielding E values less than 1 � 10�6. Our protein cluster database was constructed from publicly available
SAR11 and LD12 genomes (Table 3) using all-vs-all blastp and MCL clustering (75) as implemented by
Anvi’o v. 2.4.0 (76). We focused our analysis on putative core protein clusters found in single copy in at
least 6 SAR11 genomes and 3 LD12 genomes; notably, all but one LD12 genome derive from single-cell
genome amplification and sequencing and are therefore incomplete. For each protein cluster, we
backtranslated amino acid alignments, generated by MUSCLE v. 3.8 (77) within Anvi’o, to nucleotide
alignments. We then used RAxML v. 7.2.6 with the GTRGAMMA model to generate a maximum likelihood
tree for each protein cluster based on its corresponding nucleotide alignment (63). Metagenomic reads
that mapped to each protein cluster by blastx were aligned to the cluster’s reference nucleotide

TABLE 3 SAR11 and LD12 genomes included in pangenomic analysis

Genome name SAR11 clade Classification GenBank accession no.

Alphaproteobacterium HIMB114 IIIa SAR11 NZ_ADAC02000001
Alphaproteobacterium HIMB59 V SAR11 NC_018644
“Candidatus Pelagibacter” sp. HTCC7211 Ia.2 SAR11 ABVS00000000
“Candidatus Pelagibacter” sp. IMCC9063 IIIa SAR11 NC_015380
“Candidatus Pelagibacter ubique” HIMB058 II SAR11 ATTF01000000
“Candidatus Pelagibacter ubique” HIMB083 Ia.2 SAR11 AZAL00000000
“Candidatus Pelagibacter ubique” HTCC1062 Ia.1 SAR11 NC_007205
“Candidatus Pelagibacter ubique” HTCC8051 Ia.2 SAR11 AWZY00000000
SCGC AAA280-B11 IIIb LD12 AQUH00000000
SCGC AAA027-C06 IIIb LD12 AQPD00000000
SCGC AAA028-C07 IIIb LD12 ATTB01000000
SCGC AAA028-D10 IIIb LD12 AZOF00000000
SCGC AAA280-P20 IIIb LD12 AQUE00000000
SCGC AAA023-L09 IIIb LD12 ATTD01000000
SCGC AAA027-L15 IIIb LD12 AQUG00000000
SCGC AAA487-M09 IIIb LD12 ATTC00000000
SCGC AAA024-N17 IIIb LD12 AQZA00000000
SCGC AAA280-P20 IIIb LD12 AQUE00000000
“Candidatus Fonsibacter ubiquis” LSUCC0530 IIIb LD12 NZ_CP024034
Lake_Baikal_MAG Unknown SAR11 NSIJ01000001
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alignment using HMMER v 3.1b2 (hmmer.org). Reads were then classified taxonomically using pplacer
with the -p flag to calculate prior probabilities and guppy classify using the -pp flag to use posterior
probability for the pplacer classifier criteria v1.1.alpha19-0-g807f6f3 (78). The reference package for
taxonomy classification was generated using taxtastic v 0.5.4 (http://fhcrc.github.io/taxtastic/index.html).
We analyzed the resulting databases using the R package BoSSA v2.1 (https://cran.r-project.org/web/
packages/BoSSA/index.html).

Data availability. Laurentian Great Lakes sequences are available on the Joint Genome Institute’s
genome data portal (http://genome.jgi.doe.gov/; project identifiers, 1045074 and 1045077). R code and
associated data files are available at https://bitbucket.org/greatlakes/marine_fw_meta.git. Intermediate
data files referenced in code but too large to store on bitbucket are available on figshare at https://doi
.org/10.6084/m9.figshare.7180649.v1.
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