








regions de novo from the deep shotgun data for comparison, as the lack of an ability
to assemble new genes and genomes is a fundamental limitation of shallow shotgun
sequencing (see Discussion).

Following the comparison of shallow shotgun sequencing to ultradeep sequencing
of real biological samples, we also simulated deep WMS sequencing of complex
metagenomes from a reference database to evaluate precision and recall of shotgun
sequencing at different depths. Individual sequences were drawn at random from full
reference genomes of selected species, with a simulated 5% rate of sequencing error.
Three different mixtures of species were selected from the database to match the
average species-level composition of HMP samples from stool, oral, and skin body sites,
respectively (see Materials and Methods). Precision was defined as the fraction of
simulated reads that were correctly assigned to their respective species divided by the
total number of reads that mapped to the database. Recall was defined as the fraction
of simulated reads that were correctly assigned to their respective species divided by

FIG 2 Comparison of species and function profiles with ultradeep sequencing data. (A, B) Correlation with ground truth
species (A) and KEGG Orthology group (KO) (B) profile for known genes present in the reference database at different
sequencing depths, showing that as few as 0.5 million sequences recover nearly the full species and function profiles (ground
truth based on 2.5 billion reads per sample; 4,394 genes and 694 species were used at each subsampling level from the subject
1 ultradeep sequencing sample; comparable results from subject 2 are not shown). Gene and species profiles recovered from
the ultradeep data include only direct matches to genes and genomes present in the database; de novo assembly of novel
genes and contigs from deep data are expected to yield additional uncharacterized gene content and is not possible with
shallow shotgun data. (C, D) Scatterplots of species (C) and KOs (D) at 0.5 million versus 2.5 billion reads per sample (we used
the same sample size as used for panel A and B above).
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the total number of simulated reads. We found similarly high precision rates of 0.985
to 0.995 when using exhaustive gapped alignment, Bowtie2 (23) at 95% or 98%
alignment identity, or Centrifuge (24); k-mer-based methods, including Kraken (21) and
an in-house method for comparison (25), had lower precision (Fig. 3A). Recall was
considerably higher with 95% identity than with 98% identity alignment with exhaus-
tive gapped alignment or Bowtie2, likely due to the high error rate in the simulated
data (Fig. 3B). We also analyzed published shotgun data from the HMP mock commu-
nity (12), recovering all expected species perfectly as the top 20 taxa, with the

FIG 3 Biomarker discovery using shallow shotgun sequencing. (A, B) Precision, recall for per-read species binning of
different metagenomics analysis tools (“95” and “98” refer to the minimum alignment identity threshold used; 5 distinct
replicates [rep] were performed per subsampling depth, and error bars show standard deviations). (C) Stacked bar plot of
species abundances recovered from HMP mock community shotgun sequencing data. (D) Negative log10 false-discovery
rate (FDR)-corrected P values using Mann-Whitney U tests for species associated with type 2 diabetes (17), compared
between deep and shallow shotgun sequencing (43 healthy patients, 53 patients with type 2 diabetes).
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exception of Bacillus cereus which was recovered at the genus level due to highly
overlapping species genomes in the genus Bacillus (26) (Fig. 3C).

Species-level biomarker discovery. To assess the ability of shallow shotgun se-
quencing to identify species-level biomarkers in a clinical study, we subsampled deep
shotgun sequencing data from a study of stool microbiomes from healthy individuals
and individuals with type 2 diabetes (T2D) (17) to 0.5 million sequences per sample. We
identified the species significantly associated with T2D in both the deep data and the
shallow data using two-sided Mann-Whitney U tests and found high concordance
between the P values for species down to a 0.0005 relative abundance (rank correlation
of lists of differentially abundant species were ordered by raw P value; rho � 0.954
across 10 subsampled replicates; n � 94; P � 2 � 10�16), indicating that 0.5 million
sequences per sample enables discovery of species-level biomarkers with power com-
parable to deep that of shotgun sequencing down to a relative abundance of approx-
imately 0.0005 (Fig. 3D). Notably, this classification task contained a range of statistical
signals ranging from very strong to marginally significant.

Comparison to 16S sequencing species profiles. As noted, 16S sequencing
variable-region amplicon sequences often do not resolve taxa below the genus or
family level, although some species can be differentiated with 16S sequencing (6). To
compare the overall concordance between 16S sequencing species profiles and shallow
shotgun sequencing species profiles for pairs from the same sample, we calculated the
Pearson correlation R-squared value (coefficient of determination) of the 16S sequenc-
ing and shallow shotgun sequencing species profiles in paired samples from the HMP
(see Materials and Methods; Table S1) and found that the average R-squared was 0.918.
This demonstrated high overall concordance between 16S sequencing and shallow
shotgun sequencing species profiles within a subject. We then permuted the pairing of
the 16S sequencing and shallow shotgun sequencing profiles and repeated the average
R-squared calculation to obtain a null distribution, showing that the R-squared value
between the true pairs of samples was better in all cases than the randomly assigned
pairs (Monte Carlo permutation test, P � 0.001) (Fig. 4A). To compare the contributions
to total relative abundance of observed species between 16S sequencing and shallow
shotgun sequencing profiles, we merged the species-level taxonomic profiles for paired
16S sequencing and shallow shotgun sequencing analyses and measured the fraction
of species attributed to 16S sequencing only, shallow shotgun sequencing only, or
both. We found that there were many species observed only in the shallow shotgun

FIG 4 Comparison of 16S sequencing and shallow shotgun recovery of species-level taxa. (A) Histogram of average Pearson correlation (R-squared) of species
profiles between 16S sequencing and shallow shotgun sequencing from the same HMP sample (R-squared � 0.918), compared to the permutation-based null
distribution of R-squared values for random pairings (P � 0.001). (B) Scatterplot of relative abundances of species in shallow shotgun sequencing versus 16S
sequencing from the same HMP samples. Species found in only one data type are shown in a different color. (C) Fractions of all observed species, with relative
abundance accounted for by species found by 16S sequencing only, shallow shotgun sequencing only, or both.
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sequencing data, with some observed at high levels of abundance (Fig. 4B and C),
indicating that the 16S sequencing identified a subset of the dominant taxa at the
species level. A higher concordance was observed between genus-level profiles from
16S sequencing and shallow shotgun sequencing than between species-level profiles
from 16S sequencing and shallow shotgun sequencing (Fig. S1). We confirmed that
these results were similar when we compared the 16S sequencing data to deep
shotgun metagenomics of the HMP data (Fig. S1).

DISCUSSION

In this work, we evaluated the information content of shallow shotgun sequencing
as a potential alternative to 16S sequencing in certain situations. We found that
surprisingly few shotgun metagenomic sequences are needed to obtain more reliable
species and gene group profiles than 16S sequencing at approximately the same cost
as 16S sequencing. We also compared shallow shotgun sequencing to deep shotgun
sequencing of a number of biological data sets, including samples from the HMP, a
published deep shotgun diabetes study, and simulated and mock communities, and
found that we could recover similar trends in alpha and beta diversity, species profiles,
and species biomarker discovery down to a 0.05% relative abundance with as few as 0.5
million sequences per sample. We then analyzed two human stool samples with new
ultradeep shotgun sequencing data at 2.5 billion reads per sample, the deepest
sequencing coverage yet obtained of any microbiome to our knowledge. We found
that shallow sequencing recovers 97% to 99% of the correlated species and KEGG (16)
Orthology group (KO) profiles found by ultradeep sequencing. Although we obtained
shallow shotgun sequencing on the data described in this paper by subsampling
originally deep shotgun sequencing data, we expect subsampling to provide an
unbiased representation of the data that would be observed in actual shallow shotgun
sequencing. We also found, using HMP samples with paired 16S sequencing and
shotgun data, that shallow shotgun sequencing is superior to 16S sequencing for
recovery and annotation of species.

We did not attempt to perform an exhaustive comparison of different sequence
annotation tools, as that was outside the scope of our investigation. Instead, we
selected several tools representing different approaches to database search for com-
parison, including exhaustive semiglobal gapped alignment (18, 19), heuristic gapped
alignment using the Burrows-Wheeler transformation (23), and k-mer-based searching
(21, 25). Using simulated metagenomic data, we found that tools using gapped
alignment obtained higher precision and recall than tools using k-mer-based mapping.
This result was expected, as k-mer mapping requires exact matches of fixed-size k-mers,
whereas gapped alignment allows insertion of gaps at random to maximize overall
sequence identity. In our simulated data, fully exhaustive end-to-end gapped align-
ment with a minimum threshold of 95% identity using an accelerated version of
Needleman-Wunsch alignment (18, 19) performed best in terms of recall. Several
methods were approximately tied for highest precision. A potential advantage of
gapped alignment over k-mer mapping is that current alignment-based tools report
the genomic coordinates of each match, allowing estimation of strain-level coverage,
which may be useful for future work into novel algorithms that use strain-level
coverage to further improve precision and recall for rare species.

We note a number of important limitations to shallow shotgun sequencing. Shallow
shotgun sequencing, as with deep shotgun sequencing, may not be a viable replace-
ment for 16S sequencing when characterizing blood or biopsy specimen microbiomes,
where there is likely to be more host DNA contamination and relatively low bacterial
biomass. Shallow shotgun sequencing does not allow de novo assembly of genes and
genomes and, thus, relies on whole-genome reference databases and will require
expansion of reference genomes to cover novel environments. When analyzing poorly
characterized environments, researchers may consider combining 16S sequencing for
identification of novel taxonomic groups with shallow shotgun sequencing for func-
tional profiling. We have not attempted to compare deep or shallow shotgun sequenc-
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ing with 16S sequencing in environments with a low representation of strains in the
reference database, such as marine or soil samples. In these cases, it is likely that
shallow shotgun sequencing will still reveal useful functional profiles due to the
homology of some observed sequences to known genes and species, but we expect
16S sequencing to provide superior profiling of novel taxa due to the lack of available
representative genomes covering endemic species, as has been observed for freshwa-
ter samples (27).

Shallow shotgun sequencing is not meant to be a replacement for deep WMS
sequencing for strain-level resolution or tracking polymorphisms in strains. Shallow
shotgun sequencing cannot be used for novel gene and genome assembly. Our
analysis has compared the performance of shallow shotgun sequencing metagenomics
to those of 16S sequencing and deep shotgun metagenomics for known genes and
genomes only; de novo assembly of genes and genomes directly from deep shotgun
metagenomic data is likely to reveal novel gene content not readily identifiable from
shallow shotgun sequencing data. For many of the metrics that we examined, a depth
of 0.5 million sequences per sample was sufficient, but deeper sequencing is warranted
for detection of rare species below a relative abundance of approximately 0.0005. We
chose 0.5 million for evaluation here because it is the highest depth at which the
sequencing cost is still less than approximately half of the total cost of generating data,
and yet it is a depth at which one still obtains reasonable sensitivity for species-level
recovery; however, we do encourage readers to increase depth toward 1 million or 2
million reads when budget allows, as this will continue to increase sensitivity for
detecting rare species. Still, we found that depths of as low as 1,000 reads per sample
may be sufficient for some purposes, such as assessing differences in alpha diversity
and beta diversity. Therefore, the minimum depth required is dependent on the
experimental hypothesis under consideration. In addition, a general concern with any
taxonomic annotation from shotgun metagenomic data is that the boundaries of
traditional species taxonomic labels do not necessarily reflect consistent entities at
the genomic level when accounting for horizontal gene transfer and inaccurate
database annotations. These concerns can be alleviated to some extent using deep
shotgun sequencing and metagenomic assembly (10), coabundance clustering (11), or
proximity-based assembly (28), and de novo identification of strains from complex
metagenomes remains an active area of research.

We found that shallow sequencing of human stool microbiomes provides high-
quality species and functional profiles of human microbiome samples for little more
than the cost of 16S amplicon sequencing when a miniaturized library preparation
protocol was used (see Materials and Methods). We have made available the gene and
genome databases that we used together with a convenient Python-based wrapper
script that allows users to compare several existing tools for performing both taxo-
nomic and functional annotation (see Materials and Methods). Shallow shotgun se-
quencing has a number of important limitations and is not intended to replace deep
whole-genome shotgun sequencing for strain-level analysis or novel gene and genome
assembly. Nonetheless, shallow shotgun analysis provides considerably more accurate
functional profiles and more precise taxonomic resolution than 16S amplicon sequenc-
ing for human microbiome studies. Thus, shallow shotgun sequencing is a viable
alternative to 16S sequencing for researchers performing large-scale human micro-
biome studies where deep shotgun sequencing may not be possible.

MATERIALS AND METHODS
Alignment algorithms. Alignment was performed using several existing tools and algorithms,

including Bowtie2 (23), Centrifuge (24), Kraken (21), an in-house k-mer-based aligner for comparison with
Kraken (25), and an accelerated adaptation of Needleman-Wunsch alignment for exhaustive gapped
semiglobal alignment (18, 19).

Shotgun species profiling. After sequences were trimmed until the quality score was above 20 and
trimmed sequences shorter than 80 bases or with average quality score of less than 30 were discarded,
query reads were mapped with several different alignment tools against representative and reference
genomes from the RefSeq database, version 82 (20), using a 95% identity threshold (also compared to
98% for precision and recall evaluation on the simulated data). A read that mapped to a single reference
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genome is labeled with the NCBI taxonomic annotation. All reads that mapped to multiple reference
genomes are labeled as the last common ancestor (LCA) of each label according to the NCBI taxonomy,
and only species-level assignments are retained. We use a confidence-adjusted LCA that requires at least
80% of all tied best matches to agree for species annotation. All source codes can be found at the GitHub
repository (https://github.com/knights-lab/SHOGUN). Additional analysis code used to generate figures
and run tests for this paper can also be found in GitHub (https://github.com/knights-lab/analysis
_SHOGUN).

Shotgun functional profiling. Functional profiling was obtained using KEGG Orthology group (KO)
(16) annotations for RefSeq-derived genes (20) from directly observed exhaustive gapped alignments in
ultradeep WMS sequencing. To improve the accuracy of the direct KO profiles for low-abundance genes,
the KO profiles were separately predicted from reference genomes and the predicted profiles were used
to augment the estimates of low-abundance KOs. Specifically, we identified those query reads with a
100% match to exactly one reference genome and predicted the entire KO profile of that genome to be
present in the sample, which is similar to a previously published approach (8). This is similar to the
PICRUSt algorithm for amplicon sequencing data (7) but without the intermediate steps of clustering
short-read amplicons and identifying closely related reference genomes. The final KO profiles reported
by SHOGUN are a weighted average of predicted and directly observed KO profiles. The predicted KO
counts are weighted between 0.0 and 0.1 by a linear function of the coefficient of variation of the count
for a given KO, estimated from the size of the binomial confidence interval for the observed count of a
given KO divided by the count of that KO. The direct KO profiles receive the remainder of the weight,
such that the direct KO profiles receive at least 90% of the weight for all genes and the predicted KO
profiles are trusted only for the lowest-abundance genes for which the expected variance in observed
count is high. 16S sequences were aligned to Greengenes version 13_8 (29) at 98% identity with
exhaustive gapped alignment (18, 19). Where a query sequence aligned equally well to multiple
reference sequences, the taxonomic assignment was made using the last common ancestor conserved
across at least 80% of the set of references.

Human microbiome project data. We obtained deep WMS sequencing data from the Human
Microbiome Project (HMP) (4) and subsampled the data to simulated shallow shotgun sequencing depth.
We annotated the deep WMS sequencing data using fully exhaustive gapped alignment for both
taxonomy and functional profiles against all complete representative bacterial genomes from the
reference database RefSeq version number 82 (20). We then rarefied these samples repeatedly to 1,000,
10,000, 100,000, 1 million, and 10 million sequences per sample and ran the SHOGUN pipeline to quantify
species and gene profiles. The list of HMP WMS sequencing and corresponding 16S sequencing samples
used are provided in Tables S1 and S2, respectively. The HMP mock community data are from runs
SRR2726671 and SRR2726672 from NCBI accession number SRX1342165 (12).

Simulated human metagenomes. The body sites analyzed from the HMP1 project were first
grouped according to the broad stool, skin, and oral body sites. We calculated the average relative
abundances of all samples within each group. The 100 most abundant species for each group were used
for simulating communities. The reads were simulated from a randomly selected strain belonging to each
of those most abundant species according to the average proportion of that species in the respective
body site group using the tool dWMSim (30). The reads were simulated with default settings for Illumina
single-end sequencing machines with a 5% mutation rate where 2% of mutations are indels and with a
maximum of 10 ambiguous bases per query sequence.

Sequencing library preparation. Shotgun DNA sequencing was performed on the Illumina HiSeq
platform. DNA was extracted using the Qiagen DNeasy PowerSoil kit and was quantified using the
Quant-iT PicoGreen dsDNA assay (Thermo Fisher). DNA sequencing libraries were prepared using
one-quarter-scale NexteraXT reactions (Illumina). The resulting DNA libraries were denatured with NaOH,
diluted to 8 pM in Illumina’s HT1 buffer, and spiked with 1% PhiX, and a HiSeq 1� 100-cycle v3 kit
(Illumina) was used to sequence samples. For the ultradeep shotgun sequencing, 64 separate libraries
were prepared as described above but using full Nextera reaction mixtures from a homogenized stool
sample and were multiplexed on a HiSeq 3000 high-output run, using an entire run per sample.

Ethics statement. Volunteers contributing stool samples for the two ultradeep WMS sequencing
analyses were recruited as part of research protocol number 150275 approved by the University of
California San Diego Institutional Review Board. Research was conducted in accordance with the Helsinki
Declaration. Informed consent was obtained from all subjects recruited into the study.

Data availability. The data for the ultradeep WMS sequencing have been deposited in the European
Nucleotide Archive with the accession code PRJEB24152.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00069-18.
FIG S1, PDF file, 0.1 MB.
TABLE S1, TXT file, 0.02 MB.
TABLE S2, TXT file, 0.4 MB.
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