


















is added, importers and enzymes converting arabinose to xylulose-5-P must be syn-
thesized, causing a graded increase in arabinose uptake and utilization. We speculate
that this gradual increase in arabinose import unintuitively leads to rapid growth since
it avoids a sudden production of toxic intermediates.

Addition of glucose or arabinose reduced xylose utilization (Fig. 2B and C), thus
confirming that the presence of arabinose in the medium inhibits xylose utilization via
a mechanism that cannot entirely be due to a lower growth rate on xylose. Xylose
utilization in the (�)Ara cultures resumed rapidly upon depletion of arabinose. In
contrast, xylose utilization in the (�)Glu cultures took much longer to recover after
glucose was depleted (Fig. 2B). The difference in the time of resumption of xylose
utilization between the (�)Ara and (�)Glu is probably due to more metabolic machin-
ery for xylose utilization being present in the (�)Ara cultures than in the (�)Glu cultures
since arabinose and xylose are both metabolized via the PKP and PPP. These observa-
tions are consistent with a recent report showing that when cells are fed glucose-xylose
mixtures, the xylose is utilized only to produce PPP intermediates for biosynthetic
reactions (21). We cannot rule out the possibility that there are subpopulations that are

FIG 5 Putative Crh (CA_C0149) alignment and mRNA expression levels. (A) Alignment of C. acetobutylicum HPr (HPR_CAC) and putative Crh
(CRH_CAC0149) with Crh proteins from several Bacillus species using the CLUSTALW (ver. 1.8) Multiple Sequence Alignment tool. CRH_BSU � B.
subtilis Crh, CRH_BLI � B. licheniformis Crh, CRH_BHA � B. halodurans Crh, CRH_BCL � B. clausii Crh. The blue box highlights the conserved
N-terminal histidine residue of HPr required for phosphotransfer to the PTS that is not present in the Crh proteins. The red box highlights the
conserved C-terminal serine residue that when phosphorylated promotes activation of CCR through interaction with CcpA. (B) Fold expression
of CA_C0149 in the indicated carbohydrate source relative to glucose expression in C. acetobutylicum obtained from a previous transcriptomic
study (19).
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consuming different sugars, as this has been observed in other bacteria and may play
a role in clostridia (31, 37, 38).

Recent publications show that arabinose favors carbon flux through the PKP com-
pared to the PPP and that the reduced oxidation of carbon to CO2 when the PKP is
utilized results in an increase in acetate production (15–18). Xylose flux through the PKP
is concentration dependent, and the concentrations of xylose used in this study were
not expected to cause increased flux of xylose via the PKP (16, 18). This difference in
metabolism is reflected in the arabinose-supplemented culture, which has significantly
higher acetate production than any other condition, indicating that arabinose addition
shifted carbon flux from the PPP to the PKP (Fig. 2D). This is consistent with a recent
report by Aristilde et al., which showed high levels of flux through the PKP when cells
were fed xylose-arabinose mixtures (17). The shift to PKP metabolism is further sup-
ported by increased expression of the xfp gene upon addition of arabinose, which was
not seen under any of the other conditions (Fig. 4A). Final concentrations of acetate and
butyrate in the (�)Glu and (�)Xyl cultures are similar, which was expected because
molar equivalent amounts of carbon from glucose and xylose were converted to
acetyl-CoA and CO2 through the Embden-Meyerhof-Parnas (EMP) pathway and the PPP
coupled to the EMP, respectively, resulting in nearly equivalent production of ATP and
reduced electron carriers (15).

Expression of XylR- and AraR-controlled genes was severely reduced by 15 min after
glucose addition and continued to drop through the hour (Fig. 4). These results were
expected, since glucose-mediated CCR is well documented in C. acetobutylicum, and
the presence of CRE sequences associated with AraR- and XylR-controlled genes is the
likely mechanism for inhibition of xylose metabolism in the (�)Glu culture. Several
genes, including the PKP gene xfp (CA_C1343), lack identified CRE sites but were
repressed by glucose addition, indicating that these genes have unidentified CRE sites
or some other form of regulation (Fig. 4A). CCR mediated by glucose metabolism is well
understood, but it was not obvious how arabinose mediated repression of xylose
utilization in these cultures.

Sample clustering indicated that as time progressed, gene expression in the (�)Ara
and (�)Glu converged (Fig. 3A). There was a large overlap in the differentially expressed
genes at the 60-min time point, and many of these genes have been shown to be CcpA
controlled (Fig. 3B). The time delay between the glucose and arabinose responses is
evident in Fig. 4C when comparing the yellow and orange lines for glucose and
arabinose, respectively. The overlap between the samples indicated that arabinose was
activating CCR mediated by CcpA and Crh via the model proposed in Fig. 6. The
proposed model for arabinose activation of CCR is founded in the fact that in C.
acetobutylicum arabinose metabolism is more rapid than xylose metabolism. An in-
creased metabolic rate would result in more rapid flux to the EMP pathway via
glyceraldehyde 3-phosphate (G3P), leading to higher fructose 1,6-bisphosphate (FBP)
levels and activation of HPr kinase (39) (Fig. 6). The aldolase reaction that converts FBP
into dihydroxyacetone phosphate (DHAP) and G3P has been shown to be highly
reversible in C. acetobutylicum, indicating that an increase of G3P would increase
FBP levels (40). The result would be phosphorylation of HPr and/or the putative Crh,
subsequently leading to CcpA-mediated CCR. The delay in repression by arabinose
relative to glucose was probably due to the need to produce CA_C1343 (xfp) in
order to increase flux to the EMP pathway via the PKP. This is in contrast to the
glucose utilization enzymes, which would have been present and immediately
available to metabolize glucose, consequently increasing EMP pathway flux and
resulting in CCR.

There have been very few Crh orthologues identified, and to our knowledge, the
only one putatively identified in Clostridium is in Clostridium cellulolyticum (41). In the
current and previous studies, transcript levels of the putative C. acetobutylicum Crh
gene (CA_C0149) were increased during growth on less preferred carbohydrates
(Fig. 5B). Active repression of CA_C0149 when preferred carbohydrates are added
coupled with a putative CRE site upstream of CA_C0149 indicates that expression of the
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gene is modulated by CcpA. The putative C. acetobutylicum Crh identified in this study
needs further investigation to verify a regulatory role of the protein and determine if it
interacts with HPr kinase and CcpA. Additionally, if Crh is involved with catabolite
repression, the different roles for HPr and Crh require elucidation.

FIG 6 Proposed role of putative Crh and mechanism of catabolite repression by arabinose in C. acetobutylicum. (A) Schematic
of central metabolic pathways and activation of CcpA-mediated CCR via phosphorylated HPr or Crh. Initial arabinose metabolic
steps are shown in red, and xylose metabolic steps are shown in green. The increased metabolic rates during growth on
arabinose compared to xylose are indicated by arrow thickness. Increased levels of FBP during growth on arabinose or glucose
compared to xylose could activate HPrK, leading to phosphorylation of HPr and/or Crh. (B) Schematic showing interactions of
repressor proteins during different nutritional states with genes having different regulatory schemes. Xylose to xylose: XylR binds
xylose and XylR genes are derepressed, AraR is active and repressing AraR genes, CcpA is not active. Xylose to glucose: CcpA
is activated, lack of intracellular arabinose and xylose causes repression via AraR and XylR. Xylose to arabinose 15 min: AraR binds
arabinose resulting in derepression by AraR, XylR binds xylose, and XylR genes are derepressed, CcpA is not activated due to
insufficient FBP levels to activate HPrK. Xylose to arabinose 60 min: AraR is derepressed due to arabinose binding, decreased
import of xylose causes repression of XylR genes, and CcpA acts a repressor due to increased FBP levels as a result of increased
metabolic rate following phosphoketolase activation.
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There is a possible second level of regulation for XylR-controlled genes. Addition of
arabinose resulted in an increase in expression of both the PKP and PPP genes, likely
due to the presence of AraR binding sites upstream of these operons/genes that enable
transcription to proceed in the presence of arabinose. This would relieve any potential
bottlenecks in xylose metabolism downstream of xylulose-5-P due to induction of the
PKP, causing a drop in intracellular xylose concentrations. Decreased intracellular xylose
concentration would alter the ratio of unbound to xylose-bound XylR repressor, which
would promote XylR-mediated repression of the XylR-controlled gene. Reduction of
intracellular xylose concentration could be further exacerbated if the predicted sugar/
cation symporter CA_C1339 (araE1) transports both arabinose and xylose, as has been
demonstrated for many bacterial pentose transporters, such as in B. subtilis, E. coli, and
Salmonella enterica serovar Typhimurium (42, 43). Previous transcriptomic data sug-
gested that CA_C1339 (araE1) was a xylose-specific transporter; however, bioinformatic
analysis found an AraR binding site in its promoter region, implying a role in arabinose
transport as well (19). The RNA-Seq data in this study showed that CA_C3451 (xynT) and
CA_C1339 (araE1) are highly expressed in xylose-grown cultures; however, only
CA_C1339 (araE1) has increased expression in response to arabinose, suggesting that
it is involved in transport of xylose and arabinose. This expression pattern prompted us
to investigate the CA_C1339 promoter region. Emboss matcher (44) identified a site 84
bases upstream of the transcription start site that has homology to sites identified
upstream of XylR genes and overlaps the predicted SigA binding site in its promoter
region, indicating that transcription of this predicted pentose transporter is controlled
by both AraR and XylR (45). Promiscuous pentose transporters in other bacteria have
been demonstrated to have a higher affinity and transport rate for arabinose than
xylose. If also true in C. acetobutylicum, this could contribute to the preference for
arabinose by creating a bottleneck for xylose import and requires further investigation.

It is unclear what the metabolic advantage is, if one exists, for the hierarchy of
arabinose over xylose, but it is present among many lineages of bacteria and is
mediated by a variety of regulatory schemes. One possible explanation is the relative
availability of xylose and arabinose in the environment. While there is a higher ratio of
xylose to arabinose in lignocellulosic biomass overall, the opposite is true for one of its
components, pectin, a polysaccharide component found in primary cell walls (46).
Clostridia are well known for their pectinolytic nature in the degradation of plant
matter (47), and a selective advantage may exist for C. acetobutylicum to target the
arabinose-rich pectin before utilizing the more recalcitrant secondary cell wall compo-
nents. This strategy would be even more advantageous for consumption of the rapidly
degraded pectin-rich plant matter found in plant-derived foods, such as fruits and
vegetables (48).

The data presented here demonstrate that transcriptional regulation in C. acetobu-
tylicum is a critical component of pentose hierarchy, and provide insight into the
underpinning biochemical regulation through arabinose activation of CCR via a newly
identified putative Crh. A deeper understanding of this regulation allows informed
engineering of the organism and modulation of fermentation conditions to fine-tune
desired chemical production from C. acetobutylicum grown on pentose-rich biomass.
The ability to modulate metabolism via the PKP and PPP would provide a means to
control carbon flow and the redox state of the cells so that they match the require-
ments for chemical synthesis via natural or engineered pathways. CA_C0149 may
represent a potential control point for pentose and hexose utilization in C. acetobuty-
licum to allow full, simultaneous utilization of these abundant sugars in lignocellulosic
biomass. Additionally, the RNA-Seq data provide information about genes that are
potentially involved in pentose hierarchy mechanisms and will provide guidance for
future studies.

MATERIALS AND METHODS
Bacterial strain and growth conditions. Clostridium acetobutylicum ATCC 824 was utilized for all

studies. All growth was conducted anaerobically in a Coy anaerobic chamber (Coy Lab Products) at 37°C
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in an atmosphere containing 5% H2, 5% CO2, and 90% N2. Cells were maintained as spore suspensions
in potato glucose medium (PGM) containing, per liter, 150 g potato (shredded, boiled 1 h, and filtered
through cheesecloth), 1% glucose, 30 mM CaCO3, and 4 mM (NH4)2SO4 (49). Experimental cultures were
grown in clostridium growth medium (CGM) containing, per liter, 0.5% yeast extract, 15 mM (NH4)2SO4,
15 mM L-asparagine, 17 mM NaCl, 5 mM KH2(PO4), 3 mM Mg(SO4)·H2O, 0.7 mM Mn(SO4)·H2O, 0.4 mM
Fe(SO4)·7H2O (50).

Experimental growth and sample collection. All cultures were incubated at 37°C under anaerobic
conditions open to the environment of the anaerobe chamber, without shaking. Spores were heat shocked
at 80°C for 10 min and inoculated into CGM supplemented with 0.5% xylose. Starter cultures were subcultured
into 0.5% xylose CGM and incubated overnight. At an OD600 of 0.2, the culture was aliquoted into milk dilution
bottles (70 ml each; four conditions in three independent biological replicates) and incubated until the OD600

reached 0.4. Precarbohydrate supplementation RNA and metabolite analysis samples were collected. Cultures
were then supplemented with arabinose (0.25% final), glucose (0.25% final), or xylose (0.25% final), from a
50% stock solution of the respective sugars in water, or an equal volume of water (control). Separate samples
for RNA, metabolites, and OD600 readings were taken at 0 min (no RNA collected for this time point), 15 min,
30 min, and 60 min. Cultures were monitored for an additional 9 h, and metabolite samples and OD600

readings were taken every hour. Final OD600 readings and metabolite samples were taken the following day
at 21 h after supplemental sugar addition. Samples collected for RNA isolation were immediately incubated
with 0.03 mg/ml rifampin (final concentration) on ice, pelleted, treated with RNAprotect (Qiagen, Valencia, CA)
according to the manufacturer’s protocol, and stored at �80°C until RNA extraction. Metabolite samples were
filter sterilized and stored at �20°C until analysis.

RNA extraction, purification, and rRNA depletion. Total RNA was isolated using the miRNeasy
minikit (Qiagen; 217004) according to the manufacturer’s protocol, with an additional homogenization
and mechanical disruption step using a bead beater (BioSpec, Bartlesville, OK, USA) with zirconia-silica
beads (BioSpec; 11079101z). RNA quality was assessed using the 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA), RNA was quantified using a spectrophotometer (DeNovix, Wilmington, DE, USA),
and it was stored at �80°C until DNase treatment. DNA was removed using the Turbo DNA-free kit (Life
Technologies; AM1907) according to the manufacturer’s protocol. RNA was quantified and quality
assessed, as stated above, and genomic DNA depletion was confirmed using quantitative PCR (qPCR)
with 16S rRNA gene primers (19) and iQ SYBR Green Supermix (Bio-Rad; 170-8882) according to the
manufacturer’s instructions. rRNA was removed using the Ribo-Zero rRNA removal kit (Gram-positive
bacteria) (Illumina; MRZGP126) according to the manufacturer’s protocol. The quality of rRNA-depleted
samples was assessed using a 2100 Bioanalyzer prior to processing for sequencing library generation.

Sequencing library preparation. The TruSeq stranded mRNA sample preparation kit (Illumina;
RS-122-2101) was used to prepare the rRNA-depleted RNA for sequencing according to the manufac-
turer’s protocol with the adaptations suggested for purified mRNA input. Libraries were quantified using
the Kapa library quantification kit (Kapa Biosystems; KK4854) according to the manufacturer’s instructions
and then normalized and pooled for sequencing according to the Denature and Dilute Libraries Guide
for the NextSeq 500 (Illumina; document no. 15048776 v02). Pooled libraries were 1- by 75-bp sequenced
on a NextSeq 500 (Illumina, San Diego, CA, USA) in two sequencing runs.

RNA-Seq data analysis. Samples had an average of 14 million reads each, were assessed for quality
using FastQC, and were trimmed to remove Illumina adaptors and low-quality bases using Trimmomatic
(51, 52). Samples were mapped to the Clostridium acetobutylicum ATCC 824 reference genome (GenBank
accession numbers AE001437.1 and AE001438.3) using EDGE-pro (53), and differential gene expression
was evaluated using DESeq2 with default parameters (54). (�)Ara, (�)Glu, and (�)Xyl were compared to
(�)None at matching time points after supplemental sugar addition and analyzed for differential gene
expression. For validation, the same comparisons were assessed for differential gene comparison and
operon prediction using Rockhopper (55), and there was good agreement between the two pipelines.
Genes that met a P value cutoff of 0.05 and a fold change cutoff of 4 were considered to have differential
expression.

Statistical analysis. To focus on highly expressed genes, we filtered genes that had an RPKM greater
than the overall third quartile RPKM value in at least one sample. We also removed putative phage Clo1
(CA_C1113-1197) and Clo2 (CA_C1878-1957) genes from the analysis (24). R v 3.2.3 (56) was used for all
analyses, and plots were generated with ggplot2 (57). Venn diagrams were generated with the VennDia-
gram package (58). Heat maps were generated with the heatmaply package using hierarchical clustering
of Euclidean distances (59). We assigned transcriptional regulation sites (AraR and XylR) according to
RegPrecise (60) predictions and included all downstream genes in operons (according to DOOR [61–63]
predictions). We also included CcpA site predictions from the work of Ren et al. in addition to the genes
that had differential expression after ccpA inactivation (23).

Metabolite analysis. High-performance liquid chromatography (HPLC) analysis of external metab-
olites (carbohydrates, acetate, butyrate, acetone, butanol, and ethanol) was performed on an Agilent
1200 equipped with a refractive index detector using an Aminex HPX-87H cation exchange column
(300 mm by 7.8 mm inside diameter [i.d.] by 9 �m) from Bio-Rad Laboratories. Samples (20 �l) were
injected into the HPLC system and eluted isocratically with a mobile phase of 3.25 mM H2SO4 at
0.6 ml/min and 65°C. Quantification was based on an external calibration curve using pure known
components as standards (64).

Data availability. The raw RNA-Seq data sets and gene expression tables generated during this
study are available through NCBI’s GEO database (accession no. GSE107804).
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SUPPLEMENTAL MATERIAL
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