
















observed a pronounced upregulation of genes responsible for glutamate and aspartate
breakdown (gdhB, glutamate dehydrogenase; aspC, aspartate aminotransferase; Fig. 5),
whose end products could fuel the TCA cycle.

A notable exception are the V-type and the F-type ATPases whose expression is
induced at midcycle, a trend which was also seen for the respective C. trachomatis
proteins (51). In the absence of other main components of the respiratory chain at this
stage, the ATPases likely engage in hydrolysis of ATP (rather than ATP synthesis) and
thus act as proton/sodium pumps maintaining the membrane potential—a function
well-known for both types of ATPases and proposed for the ATPase in C. psittaci RBs
(62–64). In Protochlamydia, the ATPases continue to be expressed at later stages, when
all components of the oxidative phosphorylation pathway are in place. The proton/
sodium gradient can then be generated by the other complexes of the respiratory
chain, and the ATPases would function in ATP synthesis.

This model fits well with findings for C. trachomatis, where proteins involved in the
endogenous energy metabolism were detected only in EBs, not in RBs (65), or were
found to be more abundant in EBs (51). Moreover, glucose 6-phosphate but not ATP
stimulated de novo protein synthesis in host-free C. trachomatis EBs, and ATP genera-
tion was observed at this stage (61). Furthermore, we have previously shown that
C. trachomatis and Protochlamydia EBs require glucose 6-phosphate or glucose, respec-
tively, for maintenance of infectivity during extracellular survival (35). In conclusion, the
gene expression data presented here provide compelling evidence that a stage-specific
energy metabolism indeed occurs in vivo and that it is well conserved among known
chlamydiae.

Amino acids and pyruvate as main carbon source during replication. Another
consequence of the observed expression of genes involved in breakdown of glucose
predominantly at the postreplicative stage is that glucose cannot represent the major
carbon source at the RB stage. In fact, chlamydiae acquire the majority of cell building
blocks such as amino acids, nucleotides, and certain lipids from the host cell (66).
Transport proteins required for the uptake of those compounds exist, and most of the
24 known amino acid transporters of Protochlamydia are expressed early and midcycle,
providing all the substrates required for protein synthesis in RBs (Fig. 5). The impor-
tance of host-derived amino acids for chlamydial protein synthesis is well supported by
a recent isotopologue profiling study of C. trachomatis (67). While no external carbon
source might thus be required for protein, DNA, and RNA synthesis, chlamydiae clearly
need carbon to synthesize branched-chain fatty acids for the generation of phospho-
lipids (68). Consistent with this notion, lipid metabolism was induced at the replicative
stage in Protochlamydia (Fig. 3). This includes the pyruvate dehydrogenase genes
(pdhABC), which were upregulated early and at midcycle and catalyze the conversion of
pyruvate to acetyl coenzyme A (acetyl-CoA), the precursor of fatty acid biosynthesis
(Fig. 5). The pyruvate required for this step could be imported directly from the host as
suggested for C. psittaci (69), although no pyruvate transporter has yet been identified
in Protochlamydia or Chlamydiaceae. Pyruvate cannot be generated from host-derived
nucleotides or host lipids, as Protochlamydia lacks the genetic repertoire for breakdown
of those compounds. However, genes encoding components involved in degradation
of amino acids are present and were indeed most highly expressed early (sdaA, L-serine
dehydratase) and at midcycle (tdh, L-threonine 3-dehydrogenase; ald, alanine dehydro-
genase; gcvT, T protein of the glycine cleavage complex; Fig. 5). These enzymes
catabolize alanine, threonine, glycine, and serine to pyruvate, which may then serve as
the substrate for branched-chain fatty acid synthesis. The increased number of gene
copies encoding a specific transporter for alanine (dagA) and their early and midcycle
expression further support a model in which amino acids provide the carbon required
for fatty acid biosynthesis in Protochlamydia RBs (Fig. 6).

Metabolism of EBs. Many of the late genes involved in carbon and energy
metabolism are still highly expressed at the EB stage in Protochlamydia. Remarkably,
this is also the case for genes involved in transcription and protein synthesis. This
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includes the RNA polymerase, amino acid transporters, and many translation-related
genes (Fig. 5 and Fig. S2A). Our transcriptome data thus support a number of early
observations and recent findings suggesting that chlamydial EBs are not metabolically
inert but maintain a limited metabolism during host-free survival (35, 36, 58, 61).

Biphasic versus bipartite metabolism. In summary, transcriptional dynamics dur-
ing the Protochlamydia developmental cycle provide compelling evidence for a bipha-
sic metabolism with stage-specific carbon and energy sources (Fig. 6). This is well
supported by a number of earlier findings, suggesting that a biphasic metabolism is
generally conserved among known chlamydiae (51, 58, 61).

In addition to these stage-specific differences in physiology, a recent study dem-
onstrated cosubstrate usage by C. trachomatis, with host amino acids required for
bacterial protein biosynthesis and glucose 6-phosphate as the carbon source for

FIG 6 Biphasic metabolism of Protochlamydia during development in Acanthamoeba castellanii. This model is based on
observed transcriptional patterns, enriched functional categories at different developmental stages (Fig. 2, 3, and 5 and
Fig. S2A), and independent experimental evidence reported previously (see text for references). Activity of metabolic
pathways as inferred from gene expression levels followed similar trends early and at midcycle, and at the two later stages,
respectively. This suggests that ATP import and an amino acid-based anabolism prevails during the EB-to-RB transition and
RB replication. Later stages are characterized by a glucose-based metabolism and a pronounced increase in the activity of
the tricarboxylic acid (TCA) cycle and oxidative (ox.) phosphorylation pathway. Nucleotide transporters (Ntt’s) are shown
in blue, and amino acid (AA) and oligopeptide transporters are shown in green. “Multi” indicates that multiple amino
acid/peptide transporters with different substrate specificities are expressed. Question marks refer to hypothetical
transporters not yet identified. Asterisks indicate an increased expression at the RB stage compared to the early time point.
“RNA” denotes transcription, whereas “DNA” indicates DNA replication. Glc-6-P, glucose 6-phosphate; PPP, pentose
phosphate pathway; glyconeog., gluconeogenesis.
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lipopolysaccharide biosynthesis (67). Termed bipartite metabolism, this efficient use of
host-derived metabolites (i.e., the use of two different carbon sources) has also been
observed in Listeria monocytogenes (70) and Legionella pneumophila (71) and might
thus represent a more general adaptation of intracellular bacteria (67).

Yet, for L. pneumophila, there is also evidence for a growth phase-dependent
metabolism. Intracellular growth of L. pneumophila within A. castellanii requires amino
acids as energy source and—similarly to our model for Protochlamydia—as the carbon
source and directly for protein biosynthesis (72, 73). Although a temporal separation of
amino acid and carbohydrate usage has not yet been shown in vivo for L. pneumophila,
a pronounced transcriptional switch between replicative and transmissive phase within
A. castellanii has been reported (74). In addition, in in vitro experiments, L. pneumophila
used serine as a major carbon source for the synthesis of other amino acids and for
energy generation during all growth phases, while glucose served as the carbon source
primarily in the postreplicative phase (71, 75). A growth or developmental stage-
specific metabolism might thus not be restricted to the chlamydiae but is perhaps more
widespread among intracellular bacteria.

Transcriptional response of the Acanthamoeba host. Close to 75% of the known
A. castellanii genes (76) were detected to be expressed during infection with Protochla-
mydia (n � 12,044; Data Set S1). Although the different infection rates in our experi-
ments (5 to 60%) entail capturing only a transcript mix of infected and uninfected
amoebae, we still observed pronounced temporal patterns and characteristic expres-
sion profiles, with 3,582 Acanthamoeba genes found to be differentially expressed.
Major transcriptional shifts occurred at 2 hpi when 1,722 genes were up- and subse-
quently downregulated and at 48 hpi when 1,747 genes were induced (Fig. S6).

Enrichment analysis of putative gene functions at the early stage of infection
indicated a strong increase in cell signaling (serine threonine kinases), transport activity
(ABC transporter of unknown specificity), translation (tRNA-related functions), and
assembly of the mitochondrial respiratory chain complex III (Table S2). These effects on
the Acanthamoeba host are consistent with the observed pronounced expression of
type III secretion effectors by Protochlamydia at this stage, interfering with diverse host
signaling pathways and possibly inducing a stress response.

When Protochlamydia is proliferating at the RB stage, the amoeba host transcrip-
tome is characterized by increased expression of genes involved in breakdown of
complex sugars (Table S2). This might account for the increased ATP demand of
replicating Protochlamydia RBs. Notably downregulated at this stage are genes func-
tioning in cell signaling (Ras proteins, serine threonine kinases), ubiquitination, trans-
lation (ribosome biogenesis), transcription (transcription factors), and replication (DNA
replication initiation) (Table S2). Together, this suggests a general downregulation of
central cellular processes due to replicating Protochlamydia, which is at the peak of its
metabolic activity at this stage.

At later stages of the infection at which Protochlamydia EBs are formed, the amoeba
transcriptome is still significantly altered and strikingly different compared to the onset
of the infection. In particular, genes involved in cell signaling (histidine kinases, serine
threonine kinases) are enriched at 96 hpi, whereas key cellular pathways are still less
active, illustrating the fundamental impact of Protochlamydia on gene expression of its
amoeba host (Fig. S6 and Table S2).

The response of human cells upon infection with Chlamydiaceae continues to be
extensively studied (25, 77, 78), whereas studies on the impact of environmental
chlamydiae on their host cells are strikingly lacking. Our transcriptomic data provide the
first insights into this unexplored aspect of chlamydia-host interplay.

Conclusions. Owing to their obligate intracellular lifestyle and the lack of routine
genetic methods (79), chlamydiae are— compared to many other bacterial patho-
gens—inherently difficult to study. This particularly applies to environmental chlamyd-
iae, which were discovered only about 2 decades ago. The present study represents the
most comprehensive analysis of the transcriptional landscape of chlamydiae during
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infection and development thus far. We obtained detailed insights into gene expression
dynamics of Protochlamydia and present models for metabolism and the role and
assembly of the type III secretion system at different developmental stages. Our
findings revealed striking parallels to what is known about pathogenic chlamydiae and
provide a substantially novel perspective on the interplay between chlamydiae and
protist hosts. In addition, the vast majority of chlamydial organisms lie outside the
well-known human and animal pathogens, and thus the Protochlamydia model system
serves to represent this vast diversity. Environmental chlamydiae constitute invaluable
model systems to understand fundamental chlamydial biology, common themes and
differences among known chlamydiae, and to shed light on the evolution of the
intracellular lifestyle and pathogenesis in a ubiquitous bacterial phylum.

MATERIALS AND METHODS
Cell culture. Acanthamoeba castellanii Neff (ATCC 50373) with or without the symbiont Protochla-

mydia amoebophila UWE25 (ATCC PRA-7) were maintained at 20°C in PYG medium [20 g/liter proteose
peptone, 100 mM glucose, 2 g/liter yeast extract, 1 g/liter sodium citrate dihydrate, 4 mM MgSO4 · 7H2O,
1.32 mM Na2HPO4 · 2H2O, 2.5 mM KH2PO4, 0.05 mM Fe(NH4)2(SO4)2 · 6H2O; pH 6.5]. Cultures were
regularly screened by fluorescence in situ hybridization and 4=,6=-diamidino-2-phenylindole (DAPI)
staining (0.1 �g/ml) to exclude contamination.

Infection experiments. Protochlamydia EBs were freshly purified from amoeba cultures grown in
500-cm2 culture flasks (Nalge Nunc International, Rochester, NY, USA), in which EBs had been allowed to
accumulate in the medium for 1 week. Purification of EBs was conducted by filtering culture supernatants
through 5-�m and 1.2-�m syringe filters (Sartorius, Göttingen, Germany) to remove residual host cells.
Bacteria were collected by centrifugation (15,550 � g, 15 min, 20°C), resuspended in precooled SPG
buffer (75 g/liter sucrose, 0.52 g/liter KH2PO4, 1.53 g/liter NaHPO4 · 7H2O, 1.53 g/liter Na2HPO4 · 2H2O,
0.75 g/liter glutamic acid; pH 7.2), homogenized using a 21-gauge injection needle (B. Braun, Melsungen,
Germany), and stored overnight at 4°C in SPG buffer. For quantification of purified EBs, cell suspensions
were filtered onto a polycarbonate membrane with a pore size of 0.2 �m (EMD Millipore, Billerica, MA,
USA); cells were stained with DAPI and counted using an epifluorescence microscope (Axioplan 2
imaging; Carl Zeiss, Oberkochen, Germany).

Symbiont-free amoebae were harvested 3 days before infection and 6.4 � 107 cells per 500-cm2

culture flask per time point and replicate were seeded and incubated at 20°C until infection. To optimize
infection efficiency, particularly at early time points, we used a multiplicity of infection (MOI) of 150 for
2 h postinfection (hpi), an MOI of 100 for 48 hpi, and an MOI of 15 for 96 hpi. Precultivated amoebae were
harvested, transferred to 50-ml Greiner tubes, and purified Protochlamydia EBs were added, followed by
repeated centrifugation (centrifuged at 130 � g twice for 5 min each time and then once for 10 min at
20°C) with vortexing between the centrifugation steps. Infected amoebae were then transferred back to
the culture flasks and incubated in PYG medium at 20°C for 2 h before the infection was synchronized
by gently washing the attached amoebae three times with Page’s amoebic saline (PAS) (0.12 g/liter NaCl,
0.004 g/liter MgSO4 · 7H2O, 0.004 g/liter CaCl2 · 2H2O, 0.142 g/liter Na2HPO4, 0.136 g/liter KH2PO4). PYG
medium was added to the cultures, the culture was sampled at the 2 hpi time point, and the remaining
culture flasks were incubated at 20°C for 48 and 96 h. Extracellular Protochlamydia EBs were purified as
described above. All infection experiments were performed in biological triplicates. One culture of
symbiont-free amoebae was harvested when the culture was sampled at 2 hpi.

Fluorescence in situ hybridization and transmission electron microscopy. Fluorescence in situ
hybridization using a combination of two Cy3-labeled probes (Chls-0523, E25-454; Thermo Fisher
Scientific, Waltham, MA, USA) was performed as described elsewhere (35, 80, 81), and cells were stained
with DAPI for 5 min. Images were recorded with a charge-coupled-device (CCD) camera (AxioCam HRc;
Carl Zeiss) connected to an epifluorescence microscope and were processed using the AxioVision 4.6.3
software package (Carl Zeiss).

For transmission electron microscopy, the culture medium was replaced with fixative solution (2.5%
glutaraldehyde in 3 mM cacodylate containing 0.1 M sucrose; pH 6.5). Amoebae were fixed for 1 h at
room temperature, then collected, washed three times (0.1 M cacodylate containing 0.1 M sucrose
[pH 7.2]), and mixed with one drop of 1% Biozym plaque agarose (Biozym, Hessisch Oldendorf, Germany)
in washing buffer equilibrated at 35°C. Secondary fixation was conducted in 1% buffered osmium
tetroxide for 1 h on ice, followed by dehydration in ethanol and infiltration with low-viscosity resin (Agar
Scientific, Essex, United Kingdom). Ultrathin sections (70 nm) were cut using a Leica EM UC7 ultrami-
crotome (Leica, Wetzlar, Germany) and stained with 0.5% uranyl acetate and 3% lead citrate, and imaging
was done with a Zeiss EM 902 transmission electron microscope (Carl Zeiss).

Infectious progeny production assay. To monitor the production of infectious Protochlamydia EBs
during the developmental cycle, amoebae were infected with Protochlamydia using an MOI of 10. The
infection was synchronized by centrifugation (130 � g, 15 min, 20°C) and subsequent medium exchange.
Cells were harvested at different time points postinfection, and extracellular bacteria were separated
from amoebae by low-speed centrifugation (300 � g, 10 min, 4°C). The supernatant containing the
extracellular bacteria was centrifuged (20,800 � g, 30 min, 4°C), the pellet was resuspended in precooled
SPG medium, and stored at �80°C until further use. The pellet containing the infected amoebae was
resuspended in precooled SPG medium and subjected to two freeze/thaw (�20°C/room temperature)
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steps, followed by vortexing with glass beads (diameter of 0.75 to 1 mm; Carl Roth, Karlsruhe, Germany)
for 3 min to break up the amoebae. Amoeba cell debris and glass beads were removed by centrifugation
(300 � g, 10 min, 4°C), and the supernatants containing intracellular bacteria were stored at �80°C. The
total numbers of bacteria in intra- and extracellular suspensions were determined by counting DAPI
signals as described above. The percentage of infectious Protochlamydia EBs was determined by infecting
fresh amoebae and counting bacteria (inclusions) per amoeba at 12 hpi. The infection was carried out as
described above. Bacteria were detected by indirect immunofluorescence and DAPI staining after
methanol fixation as described previously (82). Mean relative infectivity of each fraction (intra/extracel-
lular) per time point was expressed as the number of bacteria or amoeba/total number of bacteria (�
standard error of the mean, three biological replicates).

RNA extraction and sequencing. Preliminary tests showed that RNA extraction and sequencing of
intact Protochlamydia-infected amoebae yielded an insufficient number of bacterial transcripts. Thus, to
increase the coverage of the Protochlamydia transcriptome, a protocol for enrichment of bacteria prior
to RNA extraction was developed. To minimize possible changes of the transcriptomes during enrich-
ment, each sample was processed in less than 7 min, as the half-life of total mRNA from Escherichia coli
was demonstrated to be in this range (83). Infected amoebae were harvested and collected (7,600 � g,
2 min, 20°C), and the pellets were resuspended in a sucrose buffer (35 mM Tris-HCl, 250 mM sucrose,
25 mM KCl, 10 mM MgCl2) supplemented with 50 �g/ml rifampin in order to inhibit active transcription
during the enrichment procedure (84, 85). Amoebae were then disrupted by vortexing in the presence
of glass beads (diameter of 0.75 to 1 mm; Carl Roth) for 1 min. The suspensions were subsequently
filtered through a 5-�m filter, the flowthrough fractions containing the bacteria were collected by
centrifugation (10,600 � g, 2 min, room temperature), and the pellets were immediately resuspended in
TRIzol reagent (Thermo Fisher Scientific). Extracellular Protochlamydia EBs were pelleted (20,800 � g,
2 min, room temperature), and the pellets were resuspended in sucrose buffer and subsequently treated
like the enriched bacteria.

Cells were mechanically disrupted by beat beating for 30 s at 4.5 m/s using lysing matrix A tubes and
a FastPrep-24 instrument (MP Biomedicals, Santa Ana, CA, USA). Subsequent RNA extraction was
performed according to the TRIzol guidelines. Residual DNA was digested using the Turbo DNA-free kit
(Thermo Fisher Scientific) according to the manufacturer’s instructions. DNase-treated RNA was precip-
itated with ethanol and sodium acetate and dissolved in nuclease-free water (Thermo Fisher Scientific),
and DNA contamination was controlled for via PCR targeting a short region of the bacterial 16S rRNA
gene (SigF2/R2 primers; 11) using 35 PCR cycles. rRNA was removed using the Ribo-Zero magnetic kit for
Gram-positive bacteria as recommended by the manufacturer (Illumina, San Diego, CA, USA). To enrich
for mRNA from symbiont-free amoebae, the RNA was additionally treated with Dynabeads mRNA
purification kit (Thermo Fisher Scientific). After another round of precipitation with ethanol, rRNA
depletion and RNA quality were examined using the Experion automated electrophoresis system
(Bio-Rad Laboratories, Hercules, CA, USA). RNA fragmentation was performed at 70°C for 5 min using the
RNA fragmentation reagents from Thermo Fisher Scientific and was followed by another ethanol
precipitation. For strand-specific cDNA library preparation, the NEBNext Ultra directional RNA library prep
kit for Illumina in combination with the NEBNext multiplex oligonucleotides (New England Biolabs,
Ipswich, MA, USA) was used starting at first-strand cDNA synthesis. Purification and size selection steps
were done as recommended using Agencourt AMPure beads (Beckman Coulter, Brea, CA, USA). All
libraries were sequenced using an Illumina HiSeq2000 system at the Vienna Biocenter Core Facilities
(VBCF) Next-Generation Sequencing (NGS) Unit (http://www.vbcf.ac.at) with 50-bp read length.

Sequence read processing. Sequencing reads were trimmed and cleaned before mapping (see
Text S1 in the supplemental material). To map bacterial reads to the Protochlamydia genome (18), the
Burrows-Wheeler Aligner (BWA) (86) was used; amoeba reads were mapped to the A. castellanii Neff genome
(76), the rRNA genes (87–89), and the mitochondrial genome (90) using TopHat (91), both with default
settings. Only unambiguously mapped reads were kept using SAMtools (92). Strand-specific reads per
predicted gene were counted via HTSeq (93). Reads that could not be assigned to any gene but mapped to
the genome were considered transcripts of intergenic regions (IGRs) and antisense transcripts.

Gene expression analyses. Differentially expressed genes were determined between two consec-
utive time points (2 hpi to 48 hpi, 48 hpi to 96 hpi, 96 hpi to extracellular, extracellular to 2 hpi for
Protochlamydia; uninfected to 2 hpi, 2 hpi to 48 hpi, 48 hpi to 96 hpi for A. castellanii) using the R software
environment and the Bioconductor package edgeR (94–96). Genes were considered differentially ex-
pressed if their expression changed twofold with a false-discovery rate (FDR) smaller or equal 0.05, except
for detecting gene expression changes between uninfected amoebae and infected amoebae 2 hpi, when
a fivefold change threshold was used because only one sample of uninfected amoebae was sequenced.

Gene expression data were further analyzed using custom R scripts, integrated R tools, and R
packages (94). To determine temporal expression patterns, sets of genes with similar expression profiles
were identified by hierarchical clustering of gene expression values (log2 reads per kilobase per million
[RPKM]) based on Pearson correlation distances. Obtained clusters were validated using the R package
clValid (97). Mean centered expression values were used for visualization as heatmaps using the R
package gplots (98).

To extend and improve the available Protochlamydia genome annotation by Horn et al. (18) for each
gene, we collected Pfam domains (99), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and
gene ontology (GO) term level 5 assignments using DAVID (100), COG (clusters of orthologous groups of
proteins) cluster and class assignments using MaGe (101), and type III secretion effector predictions using
Effective (102). Blast2GO (103) was used to assign GO terms to predicted proteins of A. castellanii. The
Bioconductor software package GOseq (104) and the Blast2GO enrichment analysis tool were used to test
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for statistical enrichment of functional categories (FDR � 0.05) among differentially expressed genes per
time point or temporal class. To test whether predicted type III secreted proteins were significantly
enriched in any given gene set, two-tailed Fisher’s exact tests were conducted, and P values below 0.05
were considered statistically significant.

Availability of data. Sequences were deposited at the Gene Expression Omnibus (GEO) database
and are accessible through accession number GSE93891.
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