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FIG 4 Alpha diversity for tools at different sampling depths (order: de novo, closed reference, and open reference), canadian_soil.
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memory limit in the case of UPARSE. Regarding UPARSE, the small memory limit makes
it necessary to purchase the 64-bit license in order to process large projects (e.g., see
Yatsunenko et al.’s work [40], which contains 500 GB of raw sequence data generated
on 17 HiSeq lanes) or use open-source alternatives. QIIME’s current open-source,
open-reference pipeline (based on SortMeRNA and SUMACLUST) was able to process
this quantity of data within 24 h using 64 threads on Intel Xeon CPU E5-4620 v2 at
2.60GHz or within 3 days using 64 threads on AMD Opteron Processor 6276.

Although most open-source tools report an increased run time in comparison to
UCLUST and USEARCH (Fig. 5), they provide the benefit of finding significantly fewer
OTUs. In the case of SortMeRNA, longer reads (~150 bp) are quicker to align than the
same number of shorter reads (~100 bp) due to many fewer high-scoring candidate
reference sequences to analyze. Moreover, all of these tools support multilevel multi-

FIG 5 Run time performance for all benchmarked software. All tests were performed using 1 to 32 cores on Intel Xeon
CPU E5-2640 v3 at 2.60 GHz. Input files contained reads subsampled from the Global Gut. For serial performance, some
tools do not show results for 108 reads due to exceeding wall time limit (230 h) or failed memory allocation. For parallel
performance, a single file containing 1 million Illumina sequences was used over multiple threads.

Analysis of Open-Source Sequence Clustering Methods

Volume 1 Issue 1 e00003-15 msystems.asm.org 13

 on O
ctober 29, 2020 by guest

http://m
system

s.asm
.org/

D
ow

nloaded from
 

msystems.asm.org
http://msystems.asm.org/


threading and can easily scale to modern big-data processing demands. An alternative
to reducing run time is to filter out a substantial number of reads, as done by UPARSE;
unfortunately, the filtering parameters are sensitive to different data, and choosing
them manually by trial and error can be a time-consuming task with unpredictable
outcomes in diversity.

The three open-source software products, Swarm, SUMACLUST, and SortMeRNA, are
now accessible through the widely used QIIME software package (release 1.9.0). Swarm
2 was released in reference 14 and reported to be faster and more memory efficient
than Swarm 1; however, as of this writing, only Swarm 1 has been integrated into QIIME.
Ongoing work to improve the QIIME OTU clustering workflows that use these tools
includes adding a targeted gene prefilter for de novo clustering to remove (prior to
clustering) any sequences not matching a specific gene model (e.g., 16S rRNA) and a
refined reference database for targeted hypervariable regions (e.g., V4 at 97% identity)
to improve alignment quality (41). Furthermore, research is in progress to introduce an
open-source implementation of chimera detection directly within QIIME. Both of these
improvements will further reduce the number of unrelated or erroneous reads recruited
into OTUs, a known problem with both the UCLUST- and USEARCH-based OTU clus-
tering illustrated here, without underestimating diversity.

MATERIALS AND METHODS
All steps taken to generate the analyses presented in this article are documented and implemented as
shell or python scripts, available at https://github.com/ekopylova/OTU-clustering.

Performance benchmarks. Open-source with multilevel parallelization tools tested in this paper—
Swarm, SUMACLUST, and SortMeRNA— have been integrated into QIIME 1.9.0. For these tools, all
benchmarks were launched through QIIME. For UPARSE, the recommended workflow (http://
www.drive5.com/usearch/manual/uparse_cmds.html) was run. For OTUCLUST, the script micca-preproc
was used for sequence filtering and the command otuclust for clustering. For mothur, the MiSeq SOP (42)
(website accessed 27 October 2015) and 454 SOP (43) (website accessed 27 October 2015) were run. The
shell scripts commands_16S.sh and commands_18S.sh were used to launch all tools, and the open-
source project (https://github.com/josenavas/QIIME-Scaling) was used for measuring their run time
performance. All run time performance tests were performed using 1 to 32 threads on Intel Xeon CPU
E5-2640 v3 at 2.60 GHz.

Precision and recall. For simulated and mock datasets, false-positive (FP; taxonomy/OTU string
exists in observed but not expected), false-negative (FN; taxonomy/OTU string exists in expected but
not observed), and true-positive (TP; taxonomy/OTU string exists in both observed and expected)
measures were computed between the pickers’ results (observed) and the ground truth or expected
taxonomic composition (expected). The following definitions were used: precision � TP/(TP � FP);
recall � TP/(TP � FN); F measure � 2 � precision � recall/(precision � recall).

The python script run_compute_precision_recall.py was used to compute TP, FP, FN, precision, recall,
F measure, the number of false-positive taxa whose complete set of OTUs are identified as chimeric
(FP-chimeric) by UCHIME, the number of false-positive taxa whose complete set of OTUs map with �97%
identity and coverage to BLAST’s NT database (FP-known), and the number of false-positive taxa whose
complete set of OTUs map with �97% identity and coverage to BLAST’s NT database (FP-other). The
script plot_tp_fp_distribution.py was used to generate Fig. S1, S2, and S3 in the supplemental material.

Simulating reads (even and staggered). All of the following steps can be executed using the shell
script simulate_reads.sh.

Reads were simulated using PrimerProspector (23) and the ART simulator (24). For the even data set,
the following steps were taken. (i) Use PrimerProspector to extract V4 regions from the Greengenes 97%
representative database (version 13.8); (ii) subsample 0.011% of the sequences from the resulting V4
region database; and (iii) simulate even abundance reads with ART simulator using the subsampled V4
sequences.

Amplicon sequencing simulation in ART (version VanillaIceCream-03-11-2014) could generate only
evenly distributed communities. To simulate the staggered data set, a staggered distribution of template
sequences was passed (for example, 3 duplicates of OTU1, 10 duplicates of OTU2, etc.). To simulate the
staggered data set, the following steps were taken. (i) Generate a random staggered distribution FASTA
file of template V4 sequences using the list of OTU identifications from the even data set and the V4
subsampled sequences and (ii) simulate staggered abundance reads with ART using the staggered
subsampled V4 sequences.

For both even and staggered reads, QIIME’s split_libraries_fastq.py script was run to filter simulated
reads based on quality scores and format FASTA labels to be compatible with QIIME (reads for UPARSE,
mothur, and OTUCLUST were not filtered; only FASTA labels were reformatted).

Building ground-truth BIOM tables. Ground-truth OTU maps and BIOM tables were constructed
using the simulate_reads.sh script that was used for simulating reads. OTU maps were generated using
the reads’ origin information stored in the FASTA labels of ART-simulated reads. BIOM tables were
generated using QIIME’s make_otu_table.py script together with Greengenes 97% taxonomy strings.
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Construction of a Silva 97% representative OTU tree. A eukaryotic/18S rRNA sequence set tree
was built using QIIME’s filter_alignment.py and make_phylogeny.py scripts:

filter_alignment.py -i Silva_111_post/rep_set_aligned/97_Silva_111_rep_set.fasta -e 0.0005 -g 0.80 -o
Silva_111_post/trees; make_phylogeny.py -i Silva_111_post/trees/97_Silva_111_rep_set_pfiltered.
fasta -o Silva_111_post/trees/97_Silva_111_rep_set_pfiltered.tre.

Calculating alpha diversity, beta diversity, and taxonomic correlation. Customs scripts iterating
over all benchmarking results were used to launch QIIME’s alpha and beta diversity analyses. The script
run_single_rarefaction_and_plot.py was used to compute and plot alpha diversity as shown in Fig. 4 and
in Fig. S4 and S5 in the supplemental material. The script run_beta_diversity_and_procrustes.py was
used to compute beta diversity and run Procrustes analysis.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://dx.doi.org/10.1128/
mSystems.00003-15.
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