Skip to main content
  • ASM Journals
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Latest Articles
    • Special Issues
    • COVID-19 Special Collection
    • Editor's Picks
    • Special Series: Sponsored Minireviews and Video Abstracts
    • Archive
  • Topics
    • Applied and Environmental Science
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Novel Systems Biology Techniques
    • Early-Career Systems Microbiology Perspectives
  • For Authors
    • Getting Started
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics
  • About the Journal
    • About mSystems
    • Editor in Chief
    • Board of Editors
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • ASM Journals
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
mSystems
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Latest Articles
    • Special Issues
    • COVID-19 Special Collection
    • Editor's Picks
    • Special Series: Sponsored Minireviews and Video Abstracts
    • Archive
  • Topics
    • Applied and Environmental Science
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Novel Systems Biology Techniques
    • Early-Career Systems Microbiology Perspectives
  • For Authors
    • Getting Started
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics
  • About the Journal
    • About mSystems
    • Editor in Chief
    • Board of Editors
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
Research Article | Applied and Environmental Science

Exoenzymes as a Signature of Microbial Response to Marine Environmental Conditions

Manoj Kamalanathan, Shawn M. Doyle, Chen Xu, Amanda M. Achberger, Terry L. Wade, Kathy Schwehr, Peter H. Santschi, Jason B. Sylvan, Antonietta Quigg
Michael S. Rappe, Editor
Manoj Kamalanathan
aDepartment of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Manoj Kamalanathan
Shawn M. Doyle
bDepartment of Oceanography, Texas A&M University, College Station, Texas, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Shawn M. Doyle
Chen Xu
cDepartment of Marine Science, Texas A&M University at Galveston, Galveston, Texas, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amanda M. Achberger
bDepartment of Oceanography, Texas A&M University, College Station, Texas, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Terry L. Wade
dGeochemical and Environmental Research Group, Texas A&M University, College Station, Texas, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kathy Schwehr
cDepartment of Marine Science, Texas A&M University at Galveston, Galveston, Texas, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter H. Santschi
cDepartment of Marine Science, Texas A&M University at Galveston, Galveston, Texas, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jason B. Sylvan
bDepartment of Oceanography, Texas A&M University, College Station, Texas, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jason B. Sylvan
Antonietta Quigg
aDepartment of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, USA
bDepartment of Oceanography, Texas A&M University, College Station, Texas, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Antonietta Quigg
Michael S. Rappe
University of Hawaii at Manoa
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/mSystems.00290-20
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Microbial heterotopic metabolism in the ocean is fueled by a supply of essential nutrients acquired via exoenzymes catalyzing depolymerization of high-molecular-weight compounds. Although the rates of activity for a variety of exoenzymes across various marine environments are well established, the factors regulating the production of these exoenzymes, and to some extent their correlation with microbial community composition, are less known. This study focuses on addressing these challenges using a mesocosm experiment that compared a natural seawater microbial community (control) and exposed (to oil) treatment. Exoenzyme activities for β-glucosidase, leucine aminopeptidase (LAP), and lipase were significantly correlated with dissolved nutrient concentrations. We measured correlations between carbon- and nitrogen-acquiring enzymes (β-glucosidase/lipase versus LAP) and found that the correlation of carbon-acquiring enzymes varies with the chemical nature of the available primary carbon source. Notably, a strong correlation between particulate organic carbon and β-glucosidase activity demonstrates their polysaccharide depolymerization in providing the carbon for microbial growth. Last, we show that exoenzyme activity patterns are not necessarily correlated with prokaryotic community composition, suggesting a redundancy of exoenzyme functions among the marine microbial community and substrate availability. This study provides foundational work for linking exoenzyme function with dissolved organic substrate and downstream processes in marine systems.

IMPORTANCE Microbes release exoenzymes into the environment to break down complex organic matter and nutrients into simpler forms that can be assimilated and utilized, thereby addressing their cellular carbon, nitrogen, and phosphorus requirements. Despite its importance, the factors associated with the synthesis of exoenzymes are not clearly defined, especially for the marine environment. Here, we found that exoenzymes associated with nitrogen and phosphorus acquisition were strongly correlated with inorganic nutrient levels, while those associated with carbon acquisition depended on the type of organic carbon available. We also show a linear relationship between carbon- and nitrogen-acquiring exoenzymes and a strong correlation between microbial biomass and exoenzymes, highlighting their significance to microbial productivity. Last, we show that changes in microbial community composition are not strongly associated with changes in exoenzyme activity profiles, a finding which reveals a redundancy of exoenzyme activity functions among microbial community. These findings advance our understanding of previously unknown factors associated with exoenzyme production in the marine environment.

  • Copyright © 2020 Kamalanathan et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Exoenzymes as a Signature of Microbial Response to Marine Environmental Conditions
Manoj Kamalanathan, Shawn M. Doyle, Chen Xu, Amanda M. Achberger, Terry L. Wade, Kathy Schwehr, Peter H. Santschi, Jason B. Sylvan, Antonietta Quigg
mSystems Apr 2020, 5 (2) e00290-20; DOI: 10.1128/mSystems.00290-20

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print
Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this mSystems article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Exoenzymes as a Signature of Microbial Response to Marine Environmental Conditions
(Your Name) has forwarded a page to you from mSystems
(Your Name) thought you would be interested in this article in mSystems.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Exoenzymes as a Signature of Microbial Response to Marine Environmental Conditions
Manoj Kamalanathan, Shawn M. Doyle, Chen Xu, Amanda M. Achberger, Terry L. Wade, Kathy Schwehr, Peter H. Santschi, Jason B. Sylvan, Antonietta Quigg
mSystems Apr 2020, 5 (2) e00290-20; DOI: 10.1128/mSystems.00290-20
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

exoenzymes
nutrients
oil
microbial communities
polysaccharides
nutrient transport

Related Articles

Cited By...

About

  • About mSystems
  • Author Videos
  • Board of Editors
  • Policies
  • Overleaf Pilot
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Author Warranty
  • Types of Articles
  • Getting Started
  • Ethics
  • Contact Us

Follow #mSystemsJ

@ASMicrobiology

       

 

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Online ISSN: 2379-5077